Lesson 3

Further A-Level Pure Mathematics : Core 1

Matrix Systems of Equations

3.1 Inverting a $\mathbf{3} \times \mathbf{3}$ Matrix

Finding the inverse of a 3×3 matrix makes use of a "Cookbook Recipe".
Before listing the five steps in the recipe, there is one matrix manipulation that has not been previously mentioned:

The Transpose of a $\mathbf{3} \times \mathbf{3}$ Matrix

Given, for example, the matrix $\mathbf{G}=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$ the transpose of matrix \mathbf{G}
is denoted \mathbf{G}^{T} and is formed by an interchange of rows and columns.

Thus,

$$
\mathbf{G}^{\mathrm{T}}=\left(\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right)
$$

Starting with a matrix, \mathbf{A}, the recipe cooks up the matrix, \mathbf{A}^{-1}

Inverse Matrix "Cookbook Recipe"

Step 1 : Find the determinant of of $\mathbf{A}, \operatorname{det} \mathbf{A}$

Step 2 : Form, M, the matrix of minors of \mathbf{A} by replacing each of the nine elements of the matrix \mathbf{A} with that element's minor.

Step 3 : Form, C, the matrix of cofactors by reversing the sign of some elements of the matrix of minors according to the pattern matrix,

$$
\left(\begin{array}{ccc}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right)
$$

+ indicates no change whereas - indicate change

Step 4 : Write down, \mathbf{C}^{T}, the transpose of the matrix of cofactors.
$\operatorname{Step} 5: \mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}} \mathbf{C}^{\mathrm{T}}$

3.2 Example

Find the inverse of the matrix, $\mathbf{A}=\left(\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2\end{array}\right)$
Teaching Video : http://www.NumberWonder.co.uk/v9095/3.mp4

Watch the video and then write out a full solution here:

18

[6 marks]

3.3 Exercise

Any solution based entirely on graphical
or numerical methods is not acceptable
Marks Available : 25

Question 1

Calculate the product of \mathbf{A}^{-1}, in the above example, with \mathbf{A}. That is, $\mathbf{A}^{-1} \times \mathbf{A}$ Explain why the answer is not a surprise.

Question 2

By use of the "Cookbook Recipe", find the inverse of $\mathbf{W}=\left(\begin{array}{rrr}-4 & 5 & 2 \\ -5 & 6 & 2 \\ 8 & -9 & -3\end{array}\right)$
In your solution, label each of the five steps.

Question 3

By use of the "Cookbook Recipe", find the inverse of $\mathbf{R}=\left(\begin{array}{ccc}3 & 2 & -2 \\ -2 & k & 0 \\ -1 & -3 & 3\end{array}\right)$
In this matrix k is a constant, $k \neq 0$.
Your answer will, of course, be in terms of k

Question 4

In examinations, if a matrix contains only numbers and no unknown constants, you may use your calculator to obtain the inverse matrix.
Use your calculator to find the inverse of the following matrix,
$\mathbf{S}=\left(\begin{array}{rrr}1 & 3 & 1 \\ 0 & 4 & 1 \\ 2 & -1 & 0\end{array}\right)$

Question 5

(i) Prove that if $\mathbf{A}=\mathbf{A}^{-1}$ then $\mathbf{A}^{2}=\mathrm{I}$
(ii) The matrix $\mathbf{A}=\left(\begin{array}{rrr}5 & a & 4 \\ b & -7 & 8 \\ 2 & -2 & c\end{array}\right)$

Given that $\mathbf{A}=\mathbf{A}^{-1}$, find the values of the constants a, b and c

