## Lesson 3

## Further A-Level Pure Mathematics : Core 1 Matrix Systems of Equations

## 3.1 Inverting a 3 × 3 Matrix

Finding the inverse of a  $3 \times 3$  matrix makes use of a "Cookbook Recipe". Before listing the five steps in the recipe, there is one matrix manipulation that has not been previously mentioned:

#### The Transpose of a $3 \times 3$ Matrix

Given, for example, the matrix  $\mathbf{G} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$  the transpose of matrix  $\mathbf{G}$ 

is denoted  $\mathbf{G}^{\mathrm{T}}$  and is formed by an interchange of rows and columns.

Thus,  $\mathbf{G}^{\mathrm{T}} = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}$ 

Starting with a matrix,  $\mathbf{A}$ , the recipe cooks up the matrix,  $\mathbf{A}^{-1}$ 

## Inverse Matrix "Cookbook Recipe"

- Step 1 : Find the determinant of of A, det A
- Step 2 : Form, M, the matrix of minors of A by replacing each of the nine elements of the matrix A with that element's minor.
- Step 3 : Form, C, the matrix of cofactors by reversing the sign of some elements of the matrix of minors according to the pattern matrix,

$$+ - +$$
  
 $- + -$   
 $+ - +$ 

+ indicates no change whereas - indicate change

**Step 4** : Write down,  $\mathbf{C}^{\mathrm{T}}$ , the transpose of the matrix of cofactors.

**Step 5**:  $\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \mathbf{C}^{\mathrm{T}}$ 

## 3.2 Example

Find the inverse of the matrix,  $\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$ 

Teaching Video : http://www.NumberWonder.co.uk/v9095/3.mp4



Watch the video and then write out a full solution here:

Þ

[6 marks]

3.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 25

## **Question 1**

Calculate the product of  $\mathbf{A}^{-1}$ , in the above example, with  $\mathbf{A}$ . That is,  $\mathbf{A}^{-1} \times \mathbf{A}$ Explain why the answer is not a surprise.

[ 3 marks ]

# Question 2

By use of the "Cookbook Recipe", find the inverse of  $\mathbf{W} = \begin{pmatrix} -4 & 5 & 2 \\ -5 & 6 & 2 \\ 8 & -9 & -3 \end{pmatrix}$ In your solution, label each of the five steps.

## **Question 3**

By use of the "Cookbook Recipe", find the inverse of  $\mathbf{R} = \begin{pmatrix} 3 & 2 & -2 \\ -2 & k & 0 \\ -1 & -3 & 3 \end{pmatrix}$ 

In this matrix *k* is a constant,  $k \neq 0$ .

Your answer will, of course, be in terms of k

[6 marks]

## **Question 4**

In examinations, if a matrix contains only numbers and no unknown constants, you may use your calculator to obtain the inverse matrix.

Use your calculator to find the inverse of the following matrix,

$$\mathbf{S} = \left( \begin{array}{rrr} 1 & 3 & 1 \\ 0 & 4 & 1 \\ 2 & -1 & 0 \end{array} \right)$$

[ 2 marks ]

## **Question 5**

(i) Prove that if 
$$\mathbf{A} = \mathbf{A}^{-1}$$
 then  $\mathbf{A}^{2} = \mathbf{I}$ 

[ 2 marks ]

(ii) The matrix 
$$\mathbf{A} = \begin{pmatrix} 5 & a & 4 \\ b & -7 & 8 \\ 2 & -2 & c \end{pmatrix}$$
  
Given that  $\mathbf{A} = \mathbf{A}^{-1}$ , find the values of the constants *a*, *b* and *c*

[6 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk