Lesson 4

Further A-Level Pure Mathematics: Core 1

Matrix Systems of Equations

4.1 Three Equations, Three Unknowns

The previous two lessons have developed the mathematics necessary to solve a set of three simultaneous equations in three unknowns using matrix methods.

The strategy employed is exactly the same as that used in Lesson 1 when questions of two equations in two unknowns where tackled.

Example

Use your calculator help find the unique solution to the system of equations,

$$
\begin{aligned}
2 x+4 y-z= & 12 \\
x-y+4 z= & 6 \\
4 x+5 y-z= & 17
\end{aligned}
$$

Teaching Instructions :

How to use a CASIO fx-991EX to help solve this is presented on the next page.

Calculator Assisted Solution using the CASIO CLASSWIZ fx-991EX

First write the system of equations as a matrix equation,

$$
\left(\begin{array}{rrr}
2 & 4 & -1 \\
1 & -1 & 4 \\
4 & 5 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{r}
12 \\
6 \\
17
\end{array}\right)
$$

In what follows $\mathbf{A}=\left(\begin{array}{rrr}2 & 4 & -1 \\ 1 & -1 & 4 \\ 4 & 5 & -1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{r}12 \\ 6 \\ 17\end{array}\right)$
Use the calculator to get the inverse of matrix \mathbf{A} as follows,

- Turn the calculator ON and MENU 4 to get into matrix mode
- Press 1 to define matrix \mathbf{A}
- Press $\mathbf{3}$ and $\mathbf{3}$ again to specify 3 rows and 3 columns for matrix \mathbf{A}
- Enter the nine elements of the matrix \mathbf{A} pressing $=$ after each entry
- Press AC to tell the calculator the matrix \mathbf{A} is now defined
- Press OPTN 3 to initiate a calculation involving matrix A
- Press the button $\boldsymbol{x}^{-\mathbf{1}}$ followed by $=$
- Scroll through the elements of the inverse matrix and write down,

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{1}{21}\left(\begin{array}{rrr}
-19 & -1 & 15 \\
17 & 2 & -9 \\
9 & 6 & -6
\end{array}\right)\left(\begin{array}{r}
12 \\
6 \\
17
\end{array}\right)
$$

The above line of working is worth half marks.
Now the calculator will be used to perform the matrix multiplication $\mathbf{A}^{-1} \mathbf{B}$ and so yield the values of x, y and z

- Press MENU 4 to again enter the Define Matrix screen
- Press 2 to define matrix \mathbf{B}
- Press $\mathbf{3}$ and $\mathbf{1}$ to specify 3 rows and 1 column for matrix \mathbf{B}
- Enter the three elements of the matrix \mathbf{B} pressing = after each entry
- Press AC to tell the calculator the matrix \mathbf{B} is now defined
- Press OPTN 3 to initiate a calculation involving matrix \mathbf{A}
- Press the button $\boldsymbol{x}^{-\mathbf{1}}$ followed by \times
- Press OPTN 4 to enter matrix B into the evolving calculation
- Now press = and write down,

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)
$$

\therefore The unique solution is $x=1, y=3, z=2$

4.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 30

Question 1

Further A-Level Examination Question, May 2018, Core 1, Q1 (a), (b) (Edexcel)

$$
\mathbf{M}=\left(\begin{array}{rrr}
2 & 1 & -3 \\
4 & -2 & 1 \\
3 & 5 & -2
\end{array}\right)
$$

(a) Find \mathbf{M}^{-1} giving each element in exact form.
(b) Solve the simultaneous equations,

$$
\begin{array}{r}
2 x+y-3 z=-4 \\
4 x-2 y+z=9 \\
3 x+5 y-2 z=5
\end{array}
$$

Question 2

In the following system of equations, a is an unknown constant, $a \neq-2$,

$$
\begin{aligned}
x-y+z= & 4 \\
4 x+z= & 2 a \\
2 x+a y+2 z= & a
\end{aligned}
$$

(i) Construct a suitable matrix equation with a view to preparing to solve this system of equations by matrix methods.
[1 mark]
(ii) Find, in terms of a, an expression for the determinant of the matrix,

$$
\mathbf{S}=\left(\begin{array}{rrr}
1 & -1 & 1 \\
4 & 0 & 1 \\
2 & a & 2
\end{array}\right)
$$

(iii) From \mathbf{S}, form the matrix of minors, \mathbf{M}, in terms of a
(iv) From M, form the matrix of cofactors, \mathbf{C}, in terms of a
(v) Write down the transpose, \mathbf{C}^{T}, of the matrix of cofactors, in terms of a

[1 mark]

(vi) Write down in terms of a the inverse matrix \mathbf{S}^{-1}
(vii) Find, in terms of a, the values of x, y, and z
(viii) Show that if $a=3$, the values of x, y and z are integers.

Question 3

Three planes A, B and C are defined by the following equations;

$$
\begin{aligned}
& A: x+y+z=3 \\
& B: 2 x-y-z=0 \\
& C: 3 x-2 y+z=-1
\end{aligned}
$$

By constructing and solving a suitable matrix equation, show that these three planes intersect at a single point and find the coordinates of that point

Question 4

Use your calculator to find the inverse of,

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
2 & 3 & 1 & 4 \\
0 & 1 & 2 & 2 \\
0 & 2 & 3 & 5
\end{array}\right)
$$

Question 5

Find the inverse of the matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1\end{array}\right)$ where k is a constant

