Telescoping Series

2.1 A Refusal To Telescope

The "Method of Differences" is a powerful tool in finding the sum to n terms of many series but, as the name implies, it relies on there being a subtraction part in any partial fraction expansion so that the resulting equivalent series telescopes.
The sum, $\sum_{r=0}^{n} \frac{2 r+3}{(r+1)(r+2)}$ looks similar to those considered previously.
Yet applying the partial fraction technique does not give any subtraction part.

$$
\begin{aligned}
\sum_{r=0}^{n} \frac{2 r+3}{(r+1)(r+2)} & =\sum_{r=0}^{n} \frac{1}{r+1}+\sum_{r=0}^{n} \frac{1}{r+2} \\
& =\frac{1}{1}+\frac{1}{2} \\
& +\frac{1}{2}+\frac{1}{3} \\
& +\frac{1}{3}+\frac{1}{4} \\
& +\frac{1}{4}+\ldots \\
& +\ldots+\frac{1}{n+1} \\
& +\frac{1}{n+1}+\frac{1}{n+2} \\
& =1+2\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n+1}\right)+\frac{1}{n+2}
\end{aligned}
$$

The problem identified by the failure of the method of differences to generate a telescoping series is more serious than it might at first seem for the series at the heart of the problem is The Harmonic Series,

$$
H_{n}=\sum_{r=1}^{n} \frac{1}{r}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}
$$

This is divergent and the partial sums have no simple formula in terms of n.
Teaching Video : http://www.NumberWonder.co.uk/v9097/2.mp4

The Teaching video will talk through the above example

2.2 In The Exam

In the Further A-Level examination, the questions asked will avoid problems such as that presented in the Teaching Video. Unless a question states otherwise, the default technique, even when not explicitly stated, is to apply the partial fractions method.

2.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 34

Question 1

Further A-Level Examination Question from 2018, Mock Paper, Core 1, Q4
(a) Prove that, for all positive integers n,

$$
\sum_{r=1}^{n} \frac{1}{(5 r-2)(5 r+3)} \equiv \frac{n}{a(b n+c)}
$$

where a, b and c are integers to be determined
(b) Hence, showing your working, find the exact value of

$$
\sum_{r=10}^{50} \frac{1}{(5 r-2)(5 r+3)}
$$

Question 2

Further A-Level Examination Question from June 2019, Core 1, Q4
Prove that, for $n \in \mathbb{Z}, n \geqslant 0$

$$
\sum_{r=0}^{n} \frac{1}{(r+1)(r+2)(r+3)}=\frac{(n+a)(n+b)}{c(n+2)(n+3)}
$$

where a, b and c are integers to be found

Question 3

(a) By multiplying the numerator and the denominator by the denominator's conjugate, turn the following into a telescoping series and hence obtain an expression for the sum to n terms,

$$
\sum_{r=1}^{n} \frac{1}{\sqrt{r}+\sqrt{r+1}}
$$

[4 marks]
(b) Hence evaluate,

$$
\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\ldots+\frac{1}{\sqrt{80}+\sqrt{81}}
$$

Question 4

(a) Show that $\frac{r}{(r+1)!}=\frac{1}{r!}-\frac{1}{(r+1)!}$
(b) Hence find $\sum_{r=1}^{n} \frac{r}{(r+1)!}$

Question 5

Determine the exact value of,

$$
\sum_{r=1}^{30}\left(\frac{1}{\ln (r+1)}-\frac{1}{\ln (r+2)}\right)
$$

Question 6

Show that the partial fractions method fails when trying to determine the following sum via a telescoping series,

$$
\sum_{r=1}^{n} \frac{1}{(3 r-2)(3 r+2)}
$$

Interestingly, this \#FAIL example does have a subtraction component. Thus it is a step on from the \#FAIL example at the start of this lesson which didn't work because there were no subtractions at all. However, this example still cannot be made to work, essentially because $3 p-2 \neq 3 q+2$ for any integers p and q.

