Lesson 3

Further A-Level Pure Mathematics, Core 2

Telescoping Series

3.1 The Method of Differences

Thus far, when the Method of Differences has been employed, the differences have occurred somewhat accidentally as a result of applying partial fractions to problems. The concept can be more purposefully set up and deployed to powerful effect.

First, however, a formal statement of exactly what the method of differences is:

The Method of Differences

If the general term, u_{r}, of a series can be expressed in the form

$$
f(r+1)-f(r)
$$

then

$$
\sum_{r=1}^{n} u_{r}=\sum_{r=1}^{n}(f(r+1)-f(r))
$$

In consequence, $\quad u_{1}=f(2)-f(1)$

$$
\begin{gathered}
u_{2}=f(3)-f(2) \\
u_{3}=f(4)-f(3) \\
\ldots \\
u_{n}=f(n+1)-f(n) \\
\therefore \quad \sum_{r=1}^{n} u_{r}=f(n+1)-f(1)
\end{gathered}
$$

3.2 Example

Use the method of differences to find a formula for,

$$
\sum_{r=1}^{n} r(r+1)(r+2)
$$

Begin by showing that,

$$
r(r+1)(r+2)=\frac{1}{4}(r(r+1)(r+2)(r+3)-(r-1) r(r+1)(r+2))
$$

Teaching Video : http://www.NumberWonder.co.uk/v9097/3.mp4

3.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

(a) Prove that $r(r+1)-(r-1) r=2 r$
(b) Hence prove, by the method of differences, that

$$
\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)
$$

Question 2

Use the facts that

$$
\text { - }(r+1)^{3}-r^{3}=3 r^{2}+3 r+1
$$

- $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1) \quad$ (Proven in Question 1)
- $\sum_{r=1}^{n} 1=n \quad$ (Obvious !)
to construct a proof, using the method of differences, that

$$
\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

Question 3

Further A-Level Examination Question from June 2016, FP2, Q2
(a) Show that,

$$
r^{2}(r+1)^{2}-(r-1)^{2} r^{2} \equiv 4 r^{3}
$$

Given that $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$
(b) use the identity in (a) and the method of differences to show that

$$
\left(1^{3}+2^{3}+3^{3}+\ldots+n^{3}\right)=(1+2+3+\ldots+n)^{2}
$$

Question 4

This question is about finding a formula for the series,

$$
\sum_{r=1}^{n}(r \times r!)=1 \times 1!+2 \times 2!+3 \times 3!+\ldots+n \times n!
$$

(a) Prove that $((r+1)!-1)-(r!-1)=r \times r$!
(b) Use the part (a) answer and the method of differences to find a formula for $\sum_{r=1}^{n}(r \times r!)$
(c) Evaluate $\sum_{r=1}^{6}(r \times r!)$

Question 5

This question is about finding a formula for the series,

$$
\sum_{r=1}^{n}\left(r^{2}+1\right) r!=2 \times 1!+5 \times 2!+10 \times 3!+\ldots+\left(n^{2}+1\right) n!
$$

(a) Prove that $((r+2)!-(r+1)!)-2((r+1)!-r!)=\left(r^{2}+1\right) r$!
(b) Use the part (a) answer and the method of differences to find a formula

$$
\text { for } \sum_{r=1}^{n}\left(r^{2}+1\right) r!
$$

Question 6

Further A-Level Examination Question from June 2011, FP2, Q4
Given that,

$$
(2 r+1)^{3}=A r^{3}+B r^{2}+C r+1
$$

(a) find the values of the constants A, B and C
(b) Show that,

$$
(2 r+1)^{3}-(2 r-1)^{3}=24 r^{2}+2
$$

(c) Using the result in part (b) and the method of differences, show that

$$
\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

