Lesson 2

Further A-Level Pure Mathematics, Core 2 Polar Coordinates

2.1 Curious and Interesting Curves

The key to moving between points and equations written in Cartesian form and the equivalent points and equations written in Polar form is the following diagram;

From the diagram, $\bullet \cos \theta = \frac{x}{r}$ $\bullet \sin \theta = \frac{y}{r}$ $\bullet r^2 = x^2 + y^2$

This suggests the following strategy for manipulating the algebra of a Cartesian equation to recast it in Polar form.

"Try to simplify" is vague; the ideal output is an equation of the form $r = f(\theta)$ or $r^2 = f(\theta)$ but that may not be possible.

2.2 Example

The famous curve below is called The Double Follium. It has Cartesian equation,

Find the polar equation of The Double Follium.

[4 marks]

Solution

A shortcut is to spot that the $x^2 + y^2$ piece of the equation can be replaced with r^2 alongside the more usual replacement of x with $r \cos \theta$ and y with $r \sin \theta$

$$(x^{2} + y^{2})^{2} = 28 x^{2} y$$
$$(r^{2})^{2} = 28 (r \cos \theta)^{2} (r \sin \theta)$$
$$r^{4} = 28 r^{3} \cos^{2} \theta \sin \theta$$
$$r = 28 \cos^{2} \theta \sin \theta$$

2.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

The curve below is called The Lemniscate of Bernoulli and has Cartesian equation

Show that the polar equation of The Lemniscate of Bernoulli can be written in the form $r^2 = 100 \cos(2\theta)$

[3 marks]

Question 2

(i)

 $y^{2}(8 + x) = x^{2}(8 - x)$

(ii) Show that the point with Cartesian coordinates $(-4, -4\sqrt{3})$ is on the curve.

[2 marks]

(iii) By means of implicit differentiation of the Cartesian equation show that

$$\frac{dy}{dx} = \frac{16x - 3x^2 - y^2}{16y + 2xy}$$

[4 marks]

(iv) Find the equation of the tangent to the curve at the point $(-4, -4\sqrt{3})$ in the form y = mc + c.

Question 3

The curve below is a Trifolium (three-loop) and has Cartesian equation

(i) Show that the Trifolium has polar equation $r = 10 \cos \theta (4 \sin^2 \theta - 1)$

[5 marks]

(**ii**) Find the value of *r* when $\theta = 60^{\circ}$

[1 mark]

(iii) Find the value of r when $\theta = 30^{\circ}$ and deduce the equation of the tangent to the curve for this value of θ

[3 marks]

Question 4

The curve below is The Cissoid of Diocles and has Cartesian equation

(i) Show that The Cissoid of Diocles has polar equation $r = 72 \tan \theta \sin \theta$

[4 marks]

(ii) Show that the point with Cartesian coordinates $(8, 2\sqrt{2})$ is on the curve

[2 marks]

(iii) By means of implicit differentiation of the Cartesian equation show that

$$\frac{dy}{dx} = \frac{3x^2 + y^2}{144y - 2xy}$$

[4 marks]

(iv) Find the equation of the tangent to the curve at the point $(8, 2\sqrt{2})$ in the form $y = a\sqrt{2}x + b\sqrt{2}$ where a and b are rational numbers.

[3 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk