2.1 Curious and Interesting Curves

The key to moving between points and equations written in Cartesian form and the equivalent points and equations written in Polar form is the following diagram;

From the diagram, $\bullet \cos \theta=\frac{x}{r} \quad \bullet \sin \theta=\frac{y}{r} \quad \bullet r^{2}=x^{2}+y^{2}$
This suggests the following strategy for manipulating the algebra of a Cartesian equation to recast it in Polar form.

"Try to simplify" is vague; the ideal output is an equation of the form $r=f(\theta)$ or $r^{2}=f(\theta)$ but that may not be possible.

2.2 Example

The famous curve below is called The Double Follium. It has Cartesian equation,

$$
\left(x^{2}+y^{2}\right)^{2}=28 x^{2} y
$$

Find the polar equation of The Double Follium.

Solution

A shortcut is to spot that the $x^{2}+y^{2}$ piece of the equation can be replaced with r^{2} alongside the more usual replacement of x with $r \cos \theta$ and y with $r \sin \theta$

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{2} & =28 x^{2} y \\
\left(r^{2}\right)^{2} & =28(r \cos \theta)^{2}(r \sin \theta) \\
r^{4} & =28 r^{3} \cos ^{2} \theta \sin \theta \\
r & =28 \cos ^{2} \theta \sin \theta
\end{aligned}
$$

2.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

The curve below is called The Lemniscate of Bernoulli and has Cartesian equation

$$
\left(x^{2}+y^{2}\right)^{2}=100\left(x^{2}-y^{2}\right)
$$

Show that the polar equation of The Lemniscate of Bernoulli can be written in the form $r^{2}=100 \cos (2 \theta)$

Question 2

The curve below is a Right Strophoid and has Cartesian equation

$$
y^{2}(8+x)=x^{2}(8-x)
$$

(i) Show that the Right Strophoid has polar equation $r=\frac{8 \cos (2 \theta)}{\cos \theta}$
(ii) Show that the point with Cartesian coordinates $(-4,-4 \sqrt{3})$ is on the curve.

[2 marks]

(iii) By means of implicit differentiation of the Cartesian equation show that

$$
\frac{d y}{d x}=\frac{16 x-3 x^{2}-y^{2}}{16 y+2 x y}
$$

[4 marks]
(iv) Find the equation of the tangent to the curve at the point $(-4,-4 \sqrt{3})$ in the form $y=m c+c$.

Question 3

The curve below is a Trifolium (three-loop) and has Cartesian equation

(i) Show that the Trifolium has polar equation $r=10 \cos \theta\left(4 \sin ^{2} \theta-1\right)$
(ii) Find the value of r when $\theta=60^{\circ}$
(iii) Find the value of r when $\theta=30^{\circ}$ and deduce the equation of the tangent to the curve for this value of θ

Question 4

The curve below is The Cissoid of Diocles and has Cartesian equation

$$
y^{2}=\frac{x^{3}}{72-x}
$$

(i) Show that The Cissoid of Diocles has polar equation $r=72 \tan \theta \sin \theta$
(ii) Show that the point with Cartesian coordinates $(8,2 \sqrt{2})$ is on the curve

[2 marks]

(iii) By means of implicit differentiation of the Cartesian equation show that

$$
\frac{d y}{d x}=\frac{3 x^{2}+y^{2}}{144 y-2 x y}
$$

(iv) Find the equation of the tangent to the curve at the point $(8,2 \sqrt{2})$ in the form $y=a \sqrt{2} x+b \sqrt{2}$ where a and b are rational numbers.

