7.1 Area Problems, Taken Further

Here is a recap of the type of problem tackled in the previous lesson,

The segment shaded is in the circle $r=16 \cos \theta$ and bounded by $\theta=\frac{\pi}{6}$
It's area is given by,

$$
\begin{aligned}
P & =\frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 16^{2} \cos ^{2} \theta d \theta \\
& =\frac{16^{2}}{2} \times \frac{1}{4} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(2+2 \cos 2 \theta) d \theta \\
& =32[2 \theta+\sin 2 \theta]_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\
& =32\left[\pi+\sin \pi-\frac{\pi}{3}-\sin \left(\frac{\pi}{3}\right)\right] \\
& =32\left[\pi+0-\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right] \\
& =\frac{64 \pi}{3}-16 \sqrt{3} \quad \text { (About 39.3) }
\end{aligned}
$$

With this in mind, a related problem is considered next.

7.2 Area of Overlap

Find the area of the overlap between the two circles with polar equations,

$$
r=16 \cos \theta \text { and } r=\sqrt{192}
$$

This area is the total areas of the green, blue and red shaded regions below,

To find where the circles intersect,

$$
16 \cos \theta=\sqrt{192} \Rightarrow \cos \theta=\frac{\sqrt{3}}{2} \Rightarrow \theta= \pm \frac{\pi}{6}
$$

Thus the gold line $\theta=\frac{\pi}{6}$ is added to the graph.
Half of the area sought is the green area, P, plus the blue area, Q.
But the green area, P, is the same as that worked out in the previous problem.

$$
\begin{aligned}
Q & =\frac{1}{2} \int_{0}^{\frac{\pi}{6}} 192 d \theta \\
& =16 \pi
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Area of overlap } & =2 \times(P+Q) \\
& =2\left(\frac{64 \pi}{3}-16 \sqrt{3}+16 \pi\right) \\
& =\frac{224 \pi}{3}-32 \sqrt{3} \quad \text { (About 179) }
\end{aligned}
$$

7.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 21

Question 1

Further A-Level Examination Question from June 2018, FP2, Q8 (Edexcel)

Th sketch is of the curves with polar equations

$$
\begin{array}{ll}
r=2 \sin \theta & 0 \leqslant \theta \leqslant \pi \\
r=1.5-\sin \theta & 0 \leqslant \theta \leqslant 2 \pi
\end{array}
$$

The curves intersect at the points P and Q
(a) Find the polar coordinates of the point P and the polar coordinates of the point Q

The region R, shown shaded, is enclosed by the two curves.
(b) Find the exact area of R giving your answer in the form $p \pi+q \sqrt{3}$, where p and q are rational numbers to be found.

Question 2

Further A-Level Examination Question from June 2016, FP2, Q8 (Edexcel)

The sketch is of the curve C_{1} with equation

$$
r=7 \cos \theta \quad-\frac{\pi}{2}<\theta \leqslant \frac{\pi}{2}
$$

and the curve C_{2} with equation

$$
r=3(1+\cos \theta) \quad-\pi<\theta \leqslant \pi
$$

The curves C_{1} and C_{2} both pass through the pole and intersect at the point P and at the point Q
(a) Find the polar coordinates of P and the polar coordinates of Q

The regions enclosed by the curve C_{1} and the curve C_{2} overlap, and the common region is shaded in the sketch.
(b) Find the area of R
[7 marks]

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"
© 2023 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

