GCSE Mathematics
Set Theory II
2.1 Shady Goings On

Shade: A

Shade $: A \cup B \cup C$

Shade : B $\cap C^{\prime}$

Shade $:(B \cup C)^{\prime}$

Shade : $\boldsymbol{A} \cap \boldsymbol{B}$

Shade $:(A \cup B \cup C)^{\prime}$

Shade : $\boldsymbol{A} \cup \boldsymbol{B}$

Shade : \boldsymbol{B}^{\prime}

Shade $: B \cup C$

Shade : $C \cup A^{\prime}$
[12 marks]

2.2 Exercise

Marks Available : 30

Question 1

Let: A be the set of numbers in the infinite sequence $1,5,9,13,17, \ldots$ B be the set of numbers in the infinite sequence $3,7,11,15,19, \ldots$
(i) List the first few members of the set $A \cup B$
(ii) What is the special name given to the set $A \cup B$?
[1 mark]
(iii) Use a Set Theory Symbol to describe $A \cap B$
[1 mark]

Question 2

On the Venn Diagrams below, shade the part that represents;
(i) $L \cup A$
(ii) $L \cup A^{\prime}$
(iii) $L^{\prime} \cup A$
(iv) $L^{\prime} \cup A^{\prime}$
(i)

(ii)

(iii)

(iv)

Question 3

Sets A and B are :
$A=\{$ The multiples of 3 that are less than 20$\}$
$B=\{$ The multiples of 6 that are less than 20$\}$
(i) List the elements of set A
(ii) List the elements of set B
[1 mark]
(iii) Complete the Venn Diagram to show the relationship between sets A and B

(iv) The Venn Diagram is drawn in an unusual way.
Explain why this has been done.

Question 4

In this question,

$$
\begin{aligned}
& \varepsilon=\{\text { all cars in the world }\} \\
& P=\{\text { pink cars }\}
\end{aligned}
$$

$$
R=\{\text { Rolls-Royce cars }\}
$$

(i) Describe the set $P \cap R$ in words
(ii) George writes that $P \cap R=\varnothing$
Describe in words what George is claiming.
(Do you think George is correct?)

Question 5

Shade : $B \cap C^{\prime}$

Shade : $\boldsymbol{A} \cap \boldsymbol{C}$

Shade : $\boldsymbol{B}^{\prime} \cap \boldsymbol{C}^{\prime}$

Shade : $B \cup C$

Shade : $\boldsymbol{B} \cup \boldsymbol{B}^{\prime}$

Shade : $(A \cap C)^{\prime}$

Shade : $A \cap A$

Shade : $(\boldsymbol{A} \cap B \cap C)^{\prime}$

Shade $: B \cup C^{\prime}$

Shade $:(A \cup C)^{\prime}$

Shade : $A \cup A$

Shade $:(A \cup B \cup C)^{\prime}$
[12 marks]

