Lesson 3

3.1 Counting The Elements

Given a set with a finite number of elements, it's useful to have an instruction to count the number of elements in the set.

The small lower case letter n is used to either state the number of elements in a set or to ask that they be counted.

For example, the statement n{Factors of 10} = 4 is observing that the number 10 has 4 factors.

3.2 Example

Let *T*, *N* and *F* be the following sets,

- $T = \{ \text{Factors of 10} \}$ $N = \{ \text{Factors of 9} \}$ $F = \{ \text{Factors of 15} \}$
- (i) On the Venn Diagram show the relationship between the sets T, N and F

3.3 Exercise

Marks Available : 47

Question 1

Let $T = \{ \text{factors of } 22 \}$ (i) List the elements of set T

[1 mark]

[1 mark]

(ii) What is n{factors of 22}

Question 2

In the Venn Diagram,

 $\mathcal{E} = \{\text{people at a nightclub}\}\$ $P = \{\text{people who like Pop music}\}\$ $T = \{\text{people who like Techno music}\}\$ $D = \{\text{people who like Drum \& Bass music}\}\$

(a)	Explain why <i>n</i> {people who like <i>Pop</i> music} is not 35		[1 montr]	
(b)	Determine the following,		[I mark]	
	(i)	<i>n</i> {people who like <i>Pop</i> music}	[1	
	(ii)	<i>n</i> {people who like <i>Techo</i> music}	[I mark]	
	(iii)	n(D)	[1 mark]	
	(iv)	$n(P \cap D)$	[1 mark]	
	(v)	n(P + D)	[1 mark]	
		$n(1 \cup D)$	[1 mark]	

Question 3

Let T, E, and W be the following sets,

 $T = \{ \text{the factors of } 33 \}$

- $E = \{\text{the factors of } 18\}$
- $W = \{$ the factors of 12 $\}$
- (a) List the elements of sets T, E and W below,

Question 4

For each of the Venn diagrams use set notation to describe the regions shaded green,

Question 5 TRUE or FALSE ?

- (**i**) n {factors 14} = 4
- (**ii**) $n \{ \text{factors of } 19 \} = 3$
- (iii) n {factors of a prime number} = 2
- (iv) n {factors of square number} = 3
- (**v**) n {common factors of 12 and 16} = 4

[5 marks]

Shade : $A \cup C$

Shade : $A \cap C$

Shade : $A' \cup C'$

Shade: $A \cap B'$

С

Shade : $(A \cup C)'$

Shade : $(A \cap C)'$

Shade : $C \cap C$

Shade : $A \cup B'$

Shade: $A \cap B \cap C'$

Shade : $B \cup B'$

[12 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk