3.1 Counting The Elements

Given a set with a finite number of elements, it's useful to have an instruction to count the number of elements in the set.
The small lower case letter n is used to either state the number of elements in a set or to ask that they be counted.
For example, the statement $n\{$ Factors of 10$\}=4$ is observing that the number 10 has 4 factors.

3.2 Example

Let T, N and F be the following sets,

$$
\begin{aligned}
& T=\{\text { Factors of } 10\} \\
& N=\{\text { Factors of } 9\} \\
& F=\{\text { Factors of } 15\}
\end{aligned}
$$

(i) On the Venn Diagram show the relationship between the sets T, N and F

(ii) Shade in $N \cup F$
(iii) $\quad N \cup F=\{$ \qquad , \qquad
\qquad , \qquad , \qquad \}
(iv) $n(N \cup F)=$ \qquad

3.3 Exercise

Marks Available : 47

Question 1

Let $T=\{$ factors of 22$\}$
(i) List the elements of set T
(ii) What is $n\{$ factors of 22$\}$

Question 2

In the Venn Diagram,

$$
\begin{gathered}
\varepsilon=\{\text { people at a nightclub }\} \\
P=\{\text { people who like Pop } \text { music }\} \\
T=\{\text { people who like Techno music }\} \\
D=\{\text { people who like Drum } \& \text { Bass music }\}
\end{gathered}
$$

(a) Explain why n \{people who like Pop music \} is not 35
(b) Determine the following,
(i) $n\{$ people who like Pop music $\}$
(ii) $n\{$ people who like echo music $\}$
(iii) $n(D)$
(iv) $n(P \cap D)$
(v) $n(P \cup D)$

Question 3

Let T, E, and W be the following sets,

$$
\begin{aligned}
T & =\{\text { the factors of } 33\} \\
E & =\{\text { the factors of } 18\} \\
W & =\{\text { the factors of } 12\}
\end{aligned}
$$

(a) List the elements of sets T, E and W below,

$$
T=\{
$$

\qquad , \qquad , \qquad , \qquad \}
\qquad , \qquad _ , \qquad
\qquad , \qquad \}

$$
W=\{.
$$

\qquad , \qquad , \qquad , \qquad , \qquad , \qquad \}
(b) On the Venn diagram, show the relationship between T, E and W.

(c) Determine the following,
(i) $n(T)=$ \qquad (ii) $n(E)=$ \qquad
(iii) $n(T \cap E)=$ \qquad
(iv) $n(T \cup E)=$ \qquad
(v) $n(E \cap W)=$ \qquad
(vi) $n(E \cup W)=$ \qquad
(vii) $n(T \cap E \cap W)=$ \qquad (viii) $n(T \cup E \cup W)=$ \qquad
[8 marks]
(d) Does $n(T)+n(E)=n(T \cup E)$?
(e) What is the HCF of 33,18 and 12 ?

Question 4

For each of the Venn diagrams use set notation to describe the regions shaded green,

Question 5

TRUE or FALSE?
(i) $n\{$ factors 14$\}=4$
(ii) $n\{$ factors of 19$\}=3$
(iii) $n\{$ factors of a prime number $\}=2$
(iv) $n\{$ factors of square number $\}=3$
(v) $n\{$ common factors of 12 and 16$\}=4$

Question 6

Shade : $A \cap B^{\prime}$

Shade $: A \cup B^{\prime}$

Shade : $\boldsymbol{A} \cup \boldsymbol{C}$

Shade : $\boldsymbol{A} \cap \boldsymbol{C}$

Shade : $A^{\prime} \cup C^{\prime}$

Shade : $(A \cup C)^{\prime}$

Shade : $(A \cap C)^{\prime}$

Shade : $C \cap C$

Shade : $\boldsymbol{A} \cap B \cap C^{\prime}$

Shade : $\boldsymbol{B} \cup \boldsymbol{B}^{\prime}$

Shade : $C \cup A \cup B^{\prime}$

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"

[^0]
[^0]: Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

