Lesson 4

4.1 Venn Diagram Backwards

Previously, the questions involving shading on a Venn diagram have given a piece of Set Theory algebra, and asked that the region specified be shaded. However, such questions can be asked the other way round; the shading is given and the algebra describing the region asked for.

4.2 Example

On each of the following diagrams, describe the region that is shaded by using Set Theory symbols.

Shade :

Shade :

Shade :

[6 marks]

Often, more than one answer is possible, although there is usually an elegant, simplest answer, which is to be striven for.

4.3 Exercise

Marks Available : 40

Question 1

On each of the following diagrams, describe the region that is shaded by using Set Theory symbols.

Shade :

Shade :

Shade :

Shade :

Shade :

[6 marks]

Question 2

Given that $D = \{$ Names of days in a week $\}$ What is $n\{$ Names of days in a week $\}$

[1 mark]

Question 3

Let	$S = \{$ Square numbers less than 40 $\}$
	$F = \{ Factors of 32 \}$
	$T = \{$ Triangular numbers less than 40 $\}$

(i) List the elements of set *S*

[1 mark]

- (ii) List the elements of set F
- (iii) List the elements of set T

[1 mark]

[1 mark]

(iv) Complete the Venn diagram to show the relationship between S, F and T.

- (v) By counting elements, if any, determine :
 - (a) n(F) (d) $n(S \cup F \cup T)$
 - (**b**) $n(S \cup F)$ (**e**) $n(S \cap F \cap T')$
 - (c) $n(S \cap F)$ (f) $n((S \cap F) \cup T)$

Question 4

On each of the following diagrams, describe the region that is shaded by using Set Theory symbols.

Shade :

Shade :

Shade :

Shade :

Shade :

[6 marks]

Question 5

In this question,

$$V = \{\text{vowels}\}$$
$$C = \{\text{consonants}\}$$

Describe in words the set $V \cup C$

[1 mark]

Question 6

Let ε = All positive integers Let A = {The factors of 100} Let B = {The factors of 60}

(i) List the elements of set A

[2 marks]

(ii) List the elements of set B

[2 marks]

(iii) For each of the following, decide if the given statement is TRUE or FALSE

(a) $n(A) = 9$ (f	$n(A \cap B) > 5$
------------------------------------	-------------------

- (**b**) $n(B) \neq 9$ (**g**) $7 \notin (A \cup B)$
- (**c**) $3 \in (A \cup B)$ (**h**) $101 \in A'$
- (**d**) $3 \in (A \cap B)$ (**i**) $101 \in (A' \cup B')$
- (e) $50 \notin B'$ (j) $12 \in (A \cup B)'$

[10 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2021 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk