Grade Grabber REVISION 2023

IGCSE Mathematics

Grade Grabber 7

40 Mark Paper

Question 1

Two isosceles triangles are sketched below;

(i) Explain why the two triangles are similar.

[1 mark]

(ii) The sine rule tells us that for any triangle with vertices A, B and C

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Use the sine rule to calculate the integer length of the side marked *X*.

[2 marks]

(iii) Use the fact that the triangles are similar to calculate the side marked Y.

In the diagram below, *O* is the centre of a circle. *X*, *Y* and *Z* are three points on the circumference of the circle.

The line touching at *Y* is a tangent.

Write down the size of the angles;(i) a(ii) b(iii) c

[2, 2, 2 marks]

Question 3

The formula, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, can be used to find solutions to a quadratic equation written in the form $ax^2 + bx + c = 0$, where *a*, *b* and *c* are constants.

Show how this formula may be used to solve the equation, $x^2 + x = 1$ Write your solutions to an accuracy of three decimal places.

Two numbers can be described as "coprime" if they have only 1 as a common factor. For example, 2078 and 4520 are NOT coprime because they both divide by 2.

(a)	Which one of the	following pairs	of numbers are	e coprime ?
()				r

21, 24		
35, 50		
33, 77		
25, 27		

For each pair that are not coprime state a factor they have in common.
[4 marks]

(**b**) 441 can be written as $3 \times 3 \times 7 \times 7$ We say 441 has been written as a product of primes.

(i) Write 550 as a product of primes.

[1 mark]

(**ii**) Are 441 and 550 coprime ?

[1 mark]

Question 5

Make x the subject of the formula $y = \frac{7 - 3x}{x + 5}$

This question is about solving the equation :

$$\frac{3}{(x+3)} + \frac{2}{(x+7)} = 1$$

(i) Show that this equation can be written in the form $x^2 + 5x - 6 = 0$

[4 marks]

(**ii**) Hence write down the two solutions to the original equation.

[2 marks]

Question 7

Use algebra to show that
$$0.772 = \frac{17}{22}$$

[2 marks]

A wizard's hat is made out of a cone of paper. It is 24 cm high and the base radius is 10 cm.

(i) Use the theorem of Pythagoras to calculate the slant height, *AX*.

[1 mark]

(ii) As a part of a magic spell the cone is to be cut along AX and the paper laid flat as the words "*Passus meus IGCSEus at grade Nineus*" are muttered. Find the length of the curved arc, $X_1 X_2$, of the sector.

[2 marks]

(iii) Find the angle, θ , of the sector.

[2 marks]

(iv) Find the area of the paper.

[2 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk