Grade Grabber 9

50 Mark Paper

Set Notation Recap:

Symbol	Interpretations		
\cap	intersection	and	the part of
\cup	union	or	merge
A'	not A		
\subset	subset	is contained in	
⊄	not a subset	is not contained	in
€	element	is a member of	
∉	not an element	is not a member	of
Ø	the empty set	{ }	
n(A)	the number of elements i	n set A	
${\cal E}$	the universal set		

Question 1

Given that $\mathcal{E} = \{ \text{ the positive integers } \}$ $P = \{ \text{ prime numbers } \}$ $E = \{ \text{ even numbers } \}$

- List the following sets, either in words or by listing their elements; (a)
 - (i) F'

(i)	E'	
(ii)	$P \cap E$	[1 mark]
, ,		[1 mark]
(111)	$n(P\cap E)$	[1 mark]
(iv)	$E \cup E'$	[1 mark]
(v)	$P \cap P'$	
Is 285	77463968538 ∈ <i>E</i> ?	[1 mark]
Is 9 ∈	D 9	[1 mark]
13 7 6	1 :	[1 mark]

(c)

(b)

Is $E' \subset P$? (d)

(e) Is $27 \notin P$?

[1 mark]

Is it true that the set {factors of 15 } $\not\subset E$? (f)

[1 mark]

[1 mark]

On each diagram, shade in the region specified,

(iv)

[4 marks]

Question 3

(iii)

Expand the brackets and simplify:

(i)
$$(2x-3)(7x-5)$$

[2 marks]

(ii)
$$(3 + \sqrt{2})(3 - \sqrt{2})$$

[2 marks]

(iii)
$$(2x^2)^3$$

[2 marks]

Question 4

Find
$$\frac{dy}{dx}$$
 given that $y = 5x^3 + \frac{1}{x^3} + 2x + \frac{1}{4}$

A straight line passes through the points (2, 6) and (12, 11)

(i) What is the gradient of the line?

[2 marks]

(ii) Write down the equation of the straight line in the form y = mx + c where m and c are constants to be found.

[2 marks]

Question 6

The diagram below shows four congruent equilateral triangles arranged edge-to-edge to form a large equilateral triangle.

Notice that;

$$\overrightarrow{OA} = a$$

and;

$$\overrightarrow{OB} = \boldsymbol{b}$$

Describe, in terms of the vectors \mathbf{a} and \mathbf{b} , the following;

- (i) \overrightarrow{OX}
- (ii) \overrightarrow{AX}
- (iii) \overrightarrow{ZB}

- (iv) \overrightarrow{YZ}
- (\mathbf{v}) \overrightarrow{ZO}
- (\mathbf{vi}) \overrightarrow{BA}

- (\mathbf{vii}) \overrightarrow{ZX}
- (viii) \overrightarrow{OY}
- $(\mathbf{i}\mathbf{x})$ \overrightarrow{AZ}

ABCDEFGH is a cube of side 4 cm.

AP = 2 cm and HQ = 3 cm.

Calculate;

(i) the lengths of EQ and PD

[2 marks]

(ii) the length of PQ

[1 mark]

(iii) the angle between PQ and the plane EFGH

[2 marks]

(iv) the angle QPD

[3 marks]

(i) Find the length of the side marked x in the diagram above.

[3 marks]

(ii) Find the area of the triangle.

[2 marks]