Lesson 2

A-Level Pure Mathematics : Year 2 Integration III

2.1 Integration by Parts

This is a product rule for integration. Use it when a product is to be integrated, for example;

$$\int x \sin x \, dx$$

Integration by parts expands such integrals into four pieces. It requires some differentiation, D, as well as integration, I, and some leaving alone, L.

The mnemonic *L I D I* may help. (*Lie -Die*)

In the examples we'll be integrating and differentiating sin x, cos x, ln x and e^x Here is a reminder of their derivatives:

f(x)	f'(x)
sin x	cos x
cos x	$-\sin x$
ln x	$\frac{1}{x}$
e^{x}	e^{x}

Example N° 1

$$\int x \sin x \, dx$$

= $L(x) I(\sin x) - \int D(x) I(\sin x) \, dx$
= $x (-\cos x) - \int 1 (-\cos x) \, dx$
= $-x \cos x + \int \cos x \, dx$
= $-x \cos x + \sin x + c$

Example N° 2

$$\int x^3 \ln x \, dx$$

First, swap the order

as we can $D(\ln x)$ but not (yet!) $I(\ln x)$

$$= \int \ln x \, x^3 \, dx$$

= $L(\ln x) \, I(x^3) - \int D(\ln x) \, I(x^3) \, dx$
= $\ln x \, \frac{x^4}{4} - \int \frac{1}{x} \, \frac{x^4}{4} \, dx$
= $\frac{x^4 \ln x}{4} - \int \frac{x^3}{4} \, dx$
= $\frac{x^4 \ln x}{4} - \frac{x^4}{16} + c$

[3 marks]

Example N° 3

 $\int ln x \, dx$ Sneaky question because this does not look like a product

$$= \int \ln x \times 1 \, dx$$

= $L(\ln x) I(1) - \int D(\ln x) I(1) \, dx$
= $\ln x \quad x - \int \frac{1}{x} x \, dx$
= $x \ln x - \int 1 \, dx$
= $x \ln x - x + c$

A mystery is solved; *ln x* can be integrated as well as differentiated !

2.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

Find the integral;

$$\int x \cos x \, dx$$

[3 marks]

Question 2

Find the integral;

$$\int x \sin 4x \, dx$$

[4 marks]

Question 3

This is the only question in the exercise were it's necessary to swap the order of the product in order to determine the integral, like Example N° 2

$$\int x^5 \ln x \, dx$$

Question 4 Find the integral;

 $\int x e^x dx$

[3 marks]

Question 5 Find the integral;

$$\int x \ e^{-5x} \ dx$$

[4 marks]

Question 6 Find the integral;

$$\int \frac{x}{2 e^x} dx$$

[4 marks]

Question 7

(i) By setting up a chain rule backwards, find

$$\int (3x+1)^6 dx$$

[2 marks]

(ii) Use your part (i) answer and integration by parts to show that

$$\int x (3x+1)^6 dx = \frac{x (3x+1)^7}{21} - \frac{(3x+1)^8}{21 \times 24} + c$$

[4 marks]

(iii) Simplify your answer by showing that $\frac{x (3x + 1)^7}{21} - \frac{(3x + 1)^8}{21 \times 24} + c = \frac{1}{504} (3x + 1)^7 (21x - 1) + c$

Question 8

Evaluate, giving an exact answer,

$$\int_{0}^{\frac{\pi}{3}} x \sin 3x \, dx$$

[6 marks]

Question 9

Evaluate giving an exact answer,

$$\int_0^1 (2x + 1) e^x dx$$

[6 marks]

Question 10

Do not use integration by parts at any stage in this question ! Instead, use the substitution u = 3x - 5 to evaluate,

$$7\int_{1}^{2} x^{2} (3x - 5)^{4} dx$$

[8 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk