Lesson 2

A-Level Pure Mathematics : Year 2

Integration III

2.1 Integration by Parts

This is a product rule for integration.
Use it when a product is to be integrated, for example;

$$
\int x \sin x d x
$$

Integration by parts expands such integrals into four pieces. It requires some differentiation, \boldsymbol{D}, as well as integration, \boldsymbol{I}, and some leaving alone, \boldsymbol{L}.

The mnemonic LID I may help. (Lie-Die)

In the examples we'll be integrating and differentiating $\sin x, \cos x, \ln x$ and e^{x} Here is a reminder of their derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\ln x$	$\frac{1}{x}$
e^{x}	e^{x}

Example $\mathbf{N}^{\circ} 1$

$$
\begin{array}{rl}
\int x \sin x & d x \\
& =\boldsymbol{L}(x) \boldsymbol{I}(\sin x)-\int \boldsymbol{D}(x) \boldsymbol{I}(\sin x) d x \\
& =x \quad(-\cos x)-\int 1(-\cos x) d x \\
& =-x \cos x+\int \cos x d x \\
& =-x \cos x+\sin x+c
\end{array}
$$

Example $\mathbf{N}^{\circ} 2$

$$
\int x^{3} \ln x d x
$$

First, swap the order
as we can $\boldsymbol{D}(\ln x)$ but not (yet!) $\boldsymbol{I}(\ln x)$

$$
=\int \ln x x^{3} d x
$$

$$
=\boldsymbol{L}(\ln x) \boldsymbol{I}\left(x^{3}\right)-\int \boldsymbol{D}(\ln x) \boldsymbol{I}\left(x^{3}\right) d x
$$

$$
=\ln x \quad \frac{x^{4}}{4}-\int \frac{1}{x} \frac{x^{4}}{4} d x
$$

$$
=\frac{x^{4} \ln x}{4}-\int \frac{x^{3}}{4} d x
$$

$$
=\frac{x^{4} \ln x}{4}-\frac{x^{4}}{16}+c
$$

Example $\mathbf{N}^{\circ} 3$

$$
\int \ln x d x
$$

Sneaky question because this does not look like a product
$=\int \ln x \times 1 d x$
$=\boldsymbol{L}(\ln x) \boldsymbol{I}(1)-\int \boldsymbol{D}(\ln x) \boldsymbol{I}(1) d x$
$=\ln x \quad x-\int \frac{1}{x} x d x$
$=x \ln x-\int 1 d x$
$=x \ln x-x+c$

A mystery is solved; $\ln x$ can be integrated as well as differentiated!

2.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

Find the integral;

$$
\int x \cos x d x
$$

Question 2

Find the integral;

$$
\int x \sin 4 x d x
$$

Question 3

This is the only question in the exercise were it's necessary to swap the order of the product in order to determine the integral, like Example $\mathrm{N}^{\circ} 2$

$$
\int x^{5} \ln x d x
$$

Question 4

Find the integral;

$$
\int x e^{x} d x
$$

Question 5
Find the integral;

$$
\int x e^{-5 x} d x
$$

Question 6
Find the integral;

$$
\int \frac{x}{2 e^{x}} d x
$$

Question 7

(i) By setting up a chain rule backwards, find

$$
\int(3 x+1)^{6} d x
$$

(ii) Use your part (i) answer and integration by parts to show that

$$
\int x(3 x+1)^{6} d x=\frac{x(3 x+1)^{7}}{21}-\frac{(3 x+1)^{8}}{21 \times 24}+c
$$

(iii) Simplify your answer by showing that

$$
\frac{x(3 x+1)^{7}}{21}-\frac{(3 x+1)^{8}}{21 \times 24}+c=\frac{1}{504}(3 x+1)^{7}(21 x-1)+c
$$

Question 8

Evaluate, giving an exact answer,

$$
\int_{0}^{\frac{\pi}{3}} x \sin 3 x d x
$$

Question 9

Evaluate giving an exact answer,

$$
\int_{0}^{1}(2 x+1) e^{x} d x
$$

Question 10

Do not use integration by parts at any stage in this question !
Instead, use the substitution $u=3 x-5$ to evaluate,

$$
7 \int_{1}^{2} x^{2}(3 x-5)^{4} d x
$$

