A-Level Pure Mathematics: Year 2

Integration III

3.1 Tricky Integration by Parts

$f(x)$	$f^{\prime}(x)$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec ^{2} x$
$\sec x$	$\sec x \tan x$
$\csc x$	$-\csc x \cot x$
$\cot x$	$-\csc ^{2} x$
$\ln x$	$\frac{1}{x}$
e^{x}	e^{x}

Using the table of derivatives from right to left we can see that, for example;

$$
\begin{aligned}
& \int \sin x d x=-\cos x+c \\
& \int \cos x d x=\sin x+c
\end{aligned}
$$

However, there are some obvious omissions. For example;

$$
\int \tan x d x
$$

Some cunning is needed to find this integral.

$$
\begin{aligned}
\int \tan x d x & =\int \frac{\sin x}{\cos x} d x \\
& =\int(\sin x)(\cos x)^{-1} d x \\
& =(-1) \int(-\sin x)(\cos x)^{-1} d x \\
& =(-1) \ln |\cos x|+c \\
& =\ln |\cos x|^{-1}+c \\
& =\ln \left|\frac{1}{\cos x}\right|+c \\
& =\ln |\sec x|+c
\end{aligned}
$$

3.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

Use the result, just proved, to find show that;

$$
\int_{0}^{\frac{\pi}{6}} \tan x d x=\ln 2-\frac{1}{2} \ln 3
$$

Question 2

Use integration by parts to find;

$$
\int x \sec ^{2} x d x
$$

Question 3

(a) Use the fact that;

$$
\cos ^{2} x+\sin ^{2} x=1
$$

to prove that;

$$
\tan ^{2} x=\sec ^{2} x-1
$$

(b) Hence, or otherwise, find;

$$
\int x \tan ^{2} x d x
$$

Question 4

Mirror the "cunning" used to integrate $\tan x$ to find an expression for;

$$
\int \cot x d x
$$

Question 5

Use your question 4 result to find the exact value of;

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cot x d x
$$

Question 6
Use integration by parts to find;

$$
\int x \csc ^{2} x d x
$$

Question 7

Using a trigonometric formula and integration by parts, or otherwise, find;

$$
\int x \cot ^{2} x d x
$$

Question 8

Using a trigonometric formulae first, or otherwise, find;

$$
\int \cos ^{2} x d x
$$

Question 9

Use integration by parts, and your question 8 result, to find;

$$
\int x \cos ^{2} x d x
$$

Question 10

Use integration by parts to help find;

$$
\int \frac{\ln x}{x} d x
$$

