## Lesson 5

## A-Level Pure Mathematics: Year 2

Integration III

### 5.1 Year 2 Integration : Examination Questions

The formulae book provided in the examination gives the derivative of many functions. These are identified with a * in the table below, which also highlights several key results that are NOT provided. Used backward, the table gives integrals.

| $f(x)$ | $f^{\prime}(x)$ | Given ? |
| :---: | :---: | :---: |
| $\sin x$ | $\cos x$ |  |
| $\cos x$ | $-\sin x$ |  |
| $\tan x$ | $\sec ^{2} x$ | $*$ |
| $\sec x$ | $\sec x \tan x$ | $*$ |
| $\csc x$ | $-\csc x \cot x$ | $*$ |
| $\cot x$ | $-\csc x$ | $*$ |
| $\ln x$ | $\frac{1}{x}$ | $*$ |
| $\ln \|\sec x\|$ | $\tan x$ | $*$ |
| $\ln \|\sin x\|$ | $\sec x$ | $*$ |
| $\ln \|\sec x+\tan x\|$ | $\sec x$ | $*$ |
| $\ln \left\|\tan \left(\frac{1}{2} x+\frac{1}{4} \pi\right)\right\|$ | $\csc x$ | $*$ |
| $-\ln \|\csc x+\cot x\|$ | $e^{2} x$ | $*$ |
| $\ln \left\|\tan \left(\frac{1}{2} x\right)\right\|$ | $e^{x}$ |  |
| $\cos x$ |  |  |

As has been seen, many questions require the application of a trigonometric identity, but the useful identities are not given explicitly.

The three key identities should be memorised;

$$
\begin{aligned}
\cos ^{2} \theta+\sin ^{2} \theta & =1 \\
\cos ^{2} \theta-\sin ^{2} \theta & =\cos 2 \theta \\
2 \sin \theta \cos \theta & =\sin 2 \theta
\end{aligned}
$$

From the three key, the following four are easily obtained;

$$
\begin{array}{rlr}
1+\tan ^{2} \theta & =\sec ^{2} \theta \\
\cot ^{2} \theta+1 & =\csc ^{2} \theta & \\
2 \cos ^{2} \theta & =1+\cos 2 \theta \quad \text { Essential to find } \int \cos ^{2} \theta d \theta \\
2 \sin ^{2} \theta & =1-\cos 2 \theta \quad \text { Essential to find } \int \sin ^{2} \theta d \theta
\end{array}
$$

Either memorise the following four, or learn how to obtain them from the three key.

### 5.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 28

When trigonometry and calculus mix, RADIANS MUST BE USED !

## Question 1

A-Level Examination Question from January 2010, Paper C4, Q8 (a) (Edexcel) Using the substitution $x=2 \cos u$, or otherwise, find the exact value of

$$
\int_{1}^{\sqrt{2}} \frac{1}{x^{2} \sqrt{4-x^{2}}} d x
$$

## Question 2

A-Level Examination Question from January 2013, Paper C4, Q6 (a) (Edexcel)


Shown is a sketch of the curve with equation $y=1-2 \cos x$, where $x$ is measured in radians. The curve crosses the $x$-axis at the point $A$ and the point $B$. Find, in terms of $\pi$, the $x$ coordinate of the point $A$ and the $x$ coordinate of the point $B$.

## Question 3

A-Level Examination Question from June 2013, Paper C4, Q5 (Edexcel)
(a) Use the substitution $x=u^{2}, u>0$, to show that,

$$
\int \frac{1}{x(2 \sqrt{x}-1)} d x=\int \frac{2}{u(2 u-1)} d u
$$

( b ) Hence show that

$$
\int_{1}^{9} \frac{1}{x(2 \sqrt{x}-1)} d x=2 \ln \left(\frac{a}{b}\right)
$$

where $a$ and $b$ are integers to be determined.

## Question 4

A-Level Examination Question from June 2004, Paper P3, Q4 (Edexcel) Use the substitution $u=1+\sin x$ and integration to show that

$$
\int \sin x \cos x(1+\sin x)^{5} d x=\frac{1}{42}(1+\sin x)^{6}(6 \sin x-1)+\text { constant }
$$

