A-Level Pure Mathematics : Year 2 Integration III

5.1 Year 2 Integration : Examination Questions

The formulae book provided in the examination gives the derivative of many functions. These are identified with a * in the table below, which also highlights several key results that are NOT provided. Used backward, the table gives integrals.

f(x)	f'(x)	Given ?
sin x	cos x	
cos x	– sin x	
tan x	$sec^2 x$	*
sec x	sec x tan x	*
CSC X	$-\csc x \cot x$	*
cot x	$-\csc^2 x$	*
ln x	$\frac{1}{x}$	
$ln \mid sec \mid x \mid$	tan x	*
ln sin x	cot x	*
$ln \mid sec x + tan x \mid$	sec x	*
$ln \left tan \left(\frac{1}{2}x + \frac{1}{4}\pi \right) \right $	sec x	*
$-\ln \csc x + \cot x $	csc x	*
$ln \left tan\left(\frac{1}{2}x\right) \right $	CSC X	*
e^{χ}	e^{x}	

As has been seen, many questions require the application of a trigonometric identity, but the useful identities are not given explicitly.

The *three key* identities should be memorised;

$$\cos^{2} \theta + \sin^{2} \theta = 1$$

$$\cos^{2} \theta - \sin^{2} \theta = \cos 2\theta$$

$$2\sin \theta \cos \theta = \sin 2\theta$$

From the *three key*, the *following four* are easily obtained;

$$1 + tan^{2} \theta = sec^{2} \theta$$

$$cot^{2} \theta + 1 = csc^{2} \theta$$

$$2 cos^{2} \theta = 1 + cos 2\theta$$
 Essential to find $\int cos^{2} \theta \, d\theta$

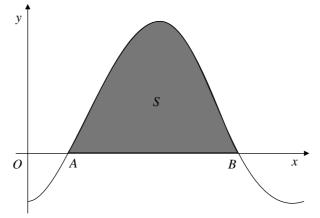
$$2 sin^{2} \theta = 1 - cos 2\theta$$
 Essential to find $\int sin^{2} \theta \, d\theta$

Either memorise the *following four*, or learn how to obtain them from the *three key*.

5.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 28

When trigonometry and calculus mix, RADIANS MUST BE USED !


Question 1

A-Level Examination Question from January 2010, Paper C4, Q8 (a) (Edexcel) Using the substitution $x = 2 \cos u$, or otherwise, find the exact value of

$$\int_{1}^{\sqrt{2}} \frac{1}{x^2 \sqrt{4 - x^2}} \, dx$$

Question 2

A-Level Examination Question from January 2013, Paper C4, Q6 (a) (Edexcel)

Shown is a sketch of the curve with equation $y = 1 - 2 \cos x$, where *x* is measured in radians. The curve crosses the *x*-axis at the point *A* and the point *B*. Find, in terms of π , the *x* coordinate of the point *A* and the *x* coordinate of the point *B*.

Question 3

A-Level Examination Question from June 2013, Paper C4, Q5 (Edexcel)

(a) Use the substitution $x = u^2$, u > 0, to show that,

$$\int \frac{1}{x (2\sqrt{x} - 1)} dx = \int \frac{2}{u (2u - 1)} du$$

[3 marks]

(**b**) Hence show that
$$\int_{1}^{9} \frac{1}{x \left(2\sqrt{x} - 1\right)} dx = 2 \ln \left(\frac{a}{b}\right)$$

where a and b are integers to be determined.

Question 4

A-Level Examination Question from June 2004, Paper P3, Q4 (Edexcel) Use the substitution u = 1 + sin x and integration to show that

$$\int \sin x \cos x (1 + \sin x)^5 dx = \frac{1}{42} (1 + \sin x)^6 (6 \sin x - 1) + constant$$

[8 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk