#### Lesson 6

## A-Level Pure Mathematics : Year 2 Integration III

# 6.1 Parametric Integration

### Example

(i) Complete the following table to determine some points on the curve with parametric equations,

| $x = t^2 - 9 \qquad \qquad y = 2t$ |     |     |     |     |   |   |   |   |   |  |
|------------------------------------|-----|-----|-----|-----|---|---|---|---|---|--|
| t                                  | - 4 | - 3 | - 2 | - 1 | 0 | 1 | 2 | 3 | 4 |  |
| x                                  |     |     |     |     |   |   |   |   |   |  |
| у                                  |     |     |     |     |   |   |   |   |   |  |

[ 3 marks ]



<sup>[ 3</sup> marks ]

(iii) Shade in the region bounded by the *y*-axis and the curve. This is the area to be found by parametric integration.

#### [ 1 mark ]

(**iv**) Find the area of the region bounded by the *y*-axis and the curve with parametric equations,

$$x = t^2 - 9 \qquad \qquad y = 2t$$

[4 marks]

 $(\mathbf{v})$  Eliminate *t* to obtain the Cartesian equation of the curve.

### [ 2 marks ]

(vi) Verify your part (iv) answer by integrating the Cartesian equation of the curve between appropriate limits.

[ 3 marks ]

#### 6.2 Exercise

## Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 20

### **Question 1**

(i) Complete the following table to determine some points on the curve with parametric equations

|   | $x = 4 - t^2$ |     |     |     | $y = t \left( t^2 - 9 \right)$ |   |   |   |       |
|---|---------------|-----|-----|-----|--------------------------------|---|---|---|-------|
| t | - 3.4         | - 3 | - 2 | - 1 | 0                              | 1 | 2 | 3 | 3.4   |
| x | -7.6          |     |     |     |                                |   |   |   | - 7.6 |
| у | - 8.7         |     |     |     |                                |   |   |   | 8.7   |

<sup>[ 3</sup> marks ]

(**ii**) Plot the curve;



<sup>[ 3</sup> marks ]

(iii) Shade in the region bounded by the loop of the curve. This is the area to be found by parametric integration.

[ 1 mark ]

(**iv**) Find the area of the region bounded by the loop of the curve with parametric equations,

$$x = 4 - t^2$$
  $y = t(t^2 - 9)$ 

[4 marks]

 $(\mathbf{v})$  Eliminate *t* to show that the Cartesian equation of the curve is

$$y = \pm (4 - x)^{\frac{1}{2}} (x + 5)$$

[4 marks]

(vi) Verify your part (iv) answer by integrating the Cartesian equation of the curve between appropriate limits. Use the substitution u = 4 - x

[5 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2022 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk