Lesson 7

A-Level Pure Mathematics: Year 2

Integration III

7.1 Sweating the Exam

(os)

Example

This question is about finding the area in the quadrant between the positive x-axis and the positive y-axis and the curve, C, with parametric equations,

$$
x=4-t^{2} \text { and } \quad y=t(t+1) \quad \text { for } \quad t \geqslant 0
$$

(i) Complete the following table,

t	0	0.5	1	1.5	2
x					
y					

(ii) Use the table to sketch the curve, C, and shade the area to be found.

(iii) Use parametric integration to find the area.
The following teaching video demonstrates a method of solution, and may be used to help write out your solution, if required. http://www.NumberWonder.co.uk/Video/v9045(11a).mp4

Notice that, as the bend is anticlockwise as t increases, strictly speaking the integration gives the area sought but with a negative sign. The video has a convincing dodge to argue about which is the lower and which is the upper limit. The following rule is worth keeping in mind;

The Limit Swap Rule

$$
\int_{A}^{B}-f(x) d x=\int_{B}^{A} f(x) d x
$$

The video begins having already done the following step,

$$
\text { Area }=\int y d x=\int y \frac{d x}{d t} d t
$$

7.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 34

Question 1

A-Level Examination Question from January 2010, Paper C4, Q7 (Edexcel)

The diagram shows a sketch of the curve C with parametric equations

$$
x=5 t^{2}-4 \quad y=t\left(9-t^{2}\right)
$$

The curve C cuts the x-axis at the points A and B
(a) Find the x-coordinate at the point A and the x-coordinate at the point B

The region R, shown shaded, is enclosed by the loop of the curve
(b) Use integration to find the area of R

Question 2

A-Level Examination Question from June 2018, Q14 (Edexcel)
A curve C has parametric equations

$$
x=3+2 \sin t \quad y=4+2 \cos 2 t \quad 0 \leqslant t<2 \pi
$$

(a) Show that all points on C satisfy

$$
y=6-(x-3)^{2}
$$

(b) (i) Sketch the curve C
(ii) Explain briefly why C does not include all points of

$$
y=6-(x-3)^{2} \quad x \in \mathbb{R}
$$

The line with equation $x+y=k$ where k is a constant, intersects C at two distinct points
(c) State the range of values of k writing your answer in set notation

Question 3

A-Level Examination Question from January 2008, Paper C4 (Edexcel)

The curve C has parametric equations

$$
x=\ln (t+2) \quad y=\frac{1}{(t+1)}
$$

The finite region R between the curve C and the x-axis, bounded by the lines with equations $x=\ln 2$ and $x=\ln 4$, is shown shaded.
(a) Show that the area of R is given by the integral,

$$
\int_{0}^{2} \frac{1}{(t+1)(t+2)} d t
$$

(b) Hence find an exact value for this area.
(c) Find a Cartesian equation of the curve C in the form $y=f(x)$

[4 marks]

(d) State the domain of values for x for this curve.

[1 mark]

Help for Q3 : http://www.NumberWonder.co.uk/Video/v9045(11d).mp4

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"
© 2022 Number Wonder
Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk

