3.1 Integrating Factor Modulus Questions

When the method of solving a differential equation involves an integrating factor, the modulus function is frequently involved. Quite often (even in textbooks) there is a fudge along the following lines,

$$
\int P(x) d x=3 \int \frac{1}{x} d x=3 \ln (x)
$$

where the modulus signs are mysteriously lost along with the constant of integration. Unfortunately the sloppiness is rewarded; it gets the correct answer ! In these lessons, however, we will include the proper logical steps which hinge upon realising (for example) that $|y|=B x^{2}$ where B is a real positive number implies that $y=A x^{2}$ where A is a real number.

3.2 Example \#1

To solve $\frac{d y}{d x}+\frac{3 y}{x}=\frac{e^{x}}{x^{3}}$ first identify that $P(x)=\frac{3}{x}$ and $Q(x)=\frac{e^{x}}{x^{3}}$

$$
\begin{aligned}
& \int P(x) d x=3 \int \frac{1}{x} d x=3 \ln |x|+c=\ln \left|x^{3}\right|+c \\
& \\
& I=e^{\int P(x) d x} \\
& \\
& =e^{\ln \left|x^{3}\right|+c} \\
& \\
& =\left|x^{3}\right| e^{c} \\
& \\
& =B\left|x^{3}\right| \text { for } B \in \mathbb{R}, B>0 \\
& \\
& =A x^{3} \quad \text { for } A \in \mathbb{R}
\end{aligned}
$$

As both sides of the differential equation are about to be multiplied by I there is no need for the constant of integration, the " A ". If it were included then it would be immediately cancelled from both sides.

$$
\begin{aligned}
\frac{d y}{d x}+\frac{3 y}{x} & =\frac{e^{x}}{x^{3}} \\
x^{3} \frac{d y}{d x}+3 x^{2} y & =e^{x}
\end{aligned}
$$

integrate both sides with respect to x

$$
\begin{aligned}
\int x^{3} \frac{d y}{d x}+3 x^{2} y d x & =\int e^{x} d x \\
x^{3} y & =e^{x}+c \\
y & =\frac{e^{x}+c}{x^{3}} \text { is the general solution }
\end{aligned}
$$

3.3 Example \#2

To solve $\frac{d y}{d x}+y \cot (x)=\csc (x) \quad x, y \in \mathbb{R}, x \neq 180 n, n \in \mathbb{Z}$ note that $P(x)=\cot (x)$ and $Q(x)=\csc (x)$

$$
\begin{aligned}
& \int P(x) d x=\int \cot (x) d x=\ln |\sin (x)|+c \\
& \qquad \\
& \quad=e^{\int P(x) d x} \\
& \\
& =e^{\ln |\sin (x)|+c} \\
& \\
& =B|\sin (x)| \text { for } B \in \mathbb{R}, B>0 \\
& \\
& =A \sin (x) \quad \text { for } A \in \mathbb{R} \\
& \\
& \frac{d y}{d x}+y \cot (x)=\csc (x)
\end{aligned}
$$

Multiplying through by I and cancelling the A gives,

$$
\begin{aligned}
\sin (x) \frac{d y}{d x}+y \frac{\cos (x)}{\sin (x)} \times \sin (x) & =\frac{1}{\sin (x)} \times \sin (x) \\
\sin (x) \frac{d y}{d x}+\cos (x) y & =1
\end{aligned}
$$

integrate both sides with respect to x

$$
\begin{array}{rlrl}
\int \sin (x) \frac{d y}{d x}+\cos (x) y d x & =\int 1 d x \\
\sin (x) y & =x+c & \text { for any real constant } c \\
y & =\frac{x+c}{\sin (x)} & \text { is the general solution }
\end{array}
$$

3.4 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 32

Question 1

(i) By means of an integrating factor, find the general solution of,

$$
\frac{d y}{d x}+\frac{y}{(x+1)}=1, \quad x, y \in \mathbb{R}, x \neq-1
$$

Give an exact answer in the form $y=f(x)$
(ii) Find the particular solution for which $y=1$ when $x=1$

Question 2

(i) By means of an integrating factor, find the general solution of,

$$
\frac{d y}{d x}+\frac{y}{x}=\frac{1}{x^{2}}, \quad x, y \in \mathbb{R}, x \neq 0
$$

Give an exact answer in the form $y=f(x)$
(ii) Find the particular solution for which $y=1$ when $x=2$
(iii) Sketch your part (ii) solution on this slope field plot.

Question 3

A-Level Examination Question from June 2015, Paper FP2, Q3 (Edexcel)
Find, in the form $y=f(x)$, the general solution of the differential equation,

$$
\tan (x) \frac{d y}{d x}+y=3 \cos (2 x) \tan (x), \quad 0<x<\frac{\pi}{2}
$$

Question 4

A-Level Examination Question from June 2018, Paper F2, Q2 (Edexcel)
(a) Find the general solution of the differential equation,

$$
\left(x^{2}+1\right) \frac{d y}{d x}+x y-x=0
$$

giving your answer in the form $y=f(x)$

[6 marks]

(b) Find the particular solution for which $y=2$ when $x=3$

