Lesson 5

Further A-Level Pure Mathematics, Core 2 Differential Equations II

5.1 Consolidation #1

Here is a summary of the previous four lessons. There is more to come but it's important to consolidate the techniques covered so far.

- Separating the variables can solve some first-order differential equations.
- A first-order differential equation of the form $\frac{dy}{dx} + P(x) y = Q(x)$ can be

solved by multiplying every term by the integrating factor $I = e^{\int P(x) dx}$

• The nature of the roots α and β of the auxiliary equation determine the general

solution to the second order differential equation $a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0$ The general solution depends on the auxiliary equation's discriminant, *D*;

 \diamond Case 1, D > 0

Two distinct real roots: $y = A e^{\alpha x} + B e^{\beta x}$, for arbitrary constants, A, B.

 \diamond Case 2, D = 0

One repeated root: $y = (A + Bx) e^{\alpha x}$, for arbitrary constants, A, B.

 \diamond Case 3, D < 0

Two complex conjugate roots $\alpha = p + qi$, $\beta = p - qi$

 $y = e^{px} (A \cos qx + B \sin qx)$, for arbitrary constants, A, B.

5.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 38

Question 1

Given that y = 1 when x = 0, find the particular solution to the differential equation,

$$\frac{dy}{dx} = y \sinh x$$

[4 marks]

(i) Let
$$M = \int e^{-3x} \sin x \, dx$$

By using integration by parts twice show that,

 $10 M = -e^{-3x} (\cos x + 3\sin x) + c, \text{ for some constant } c$

[4 marks]

(ii)
$$\frac{dy}{dx} - 3y = \sin x$$

Given that $y = 0$ when $x = 0$, find y in terms of x.

[4 marks]

Find the solution to the differential equation,

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 10y = 0$$

given that, when x = 0, both y = 0 and $\frac{dy}{dx} = 3$

[8 marks]

Find y in terms of k and x, given that

$$\frac{d^2y}{dx^2} + k^2 y = 0$$
, where k is a constant

and y = 1 and $\frac{dy}{dx} = 1$ at x = 0

[8 marks]

(i) Find the general solution to the differential equation,

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = 0$$

[4 marks]

(ii) Given that x = 1 and $\frac{dx}{dt} = 1$ at t = 0, find the particular solution to the differential equation, giving your answer in the form x = f(t)

[2 marks]

(iii) Write your part (ii) answer in the form $R e^{kt} cos(2t - \alpha)$ where k, R and α are constants that you have determined the exact value of.

[2 marks]

(iv) Sketch the curve with equation x = f(t), $0 \le t \le \pi$, showing the coordinates, as multiples of π , of the points where the curve cuts the *t*-axis.

[2 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk