Lesson 5

Further A-Level Pure Mathematics, Core 2

Differential Equations II

5.1 Consolidation \#1

Here is a summary of the previous four lessons. There is more to come but it's important to consolidate the techniques covered so far.

- Separating the variables can solve some first-order differential equations.
- A first-order differential equation of the form $\frac{d y}{d x}+P(x) y=Q(x)$ can be solved by multiplying every term by the integrating factor $I=e^{\int P(x) d x}$
- The nature of the roots α and β of the auxiliary equation determine the general solution to the second order differential equation $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0$ The general solution depends on the auxiliary equation's discriminant, D;
\diamond Case 1, $\boldsymbol{D}>\mathbf{0}$
Two distinct real roots: $y=A e^{\alpha x}+B e^{\beta x}$, for arbitrary constants, A, B.
\diamond Case 2, D=0
One repeated root: $y=(A+B x) e^{\alpha x}$, for arbitrary constants, A, B.
\diamond Case 3, $\boldsymbol{D}<\mathbf{0}$
Two complex conjugate roots $\alpha=p+q \mathrm{i}, \beta=p-q \mathrm{i}$
$y=e^{p x}(A \cos q x+B \sin q x)$, for arbitrary constants, A, B.

5.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable
> Marks Available :38

Question 1

Given that $y=1$ when $x=0$, find the particular solution to the differential equation,
$\frac{d y}{d x}=y \sinh x$

Question 2

(i) Let $M=\int e^{-3 x} \sin x d x$

By using integration by parts twice show that,
$10 M=-e^{-3 x}(\cos x+3 \sin x)+c, \quad$ for some constant c
(ii) $\frac{d y}{d x}-3 y=\sin x$

Given that $y=0$ when $x=0$, find y in terms of x.

Question 3

Find the solution to the differential equation,

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+10 y=0
$$

given that, when $x=0$, both $y=0$ and $\frac{d y}{d x}=3$

Question 4

Find y in terms of k and x, given that

$$
\frac{d^{2} y}{d x^{2}}+k^{2} y=0, \text { where } k \text { is a constant }
$$

and $y=1$ and $\frac{d y}{d x}=1$ at $x=0$

Question 5

(i) Find the general solution to the differential equation,

$$
\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+5 x=0
$$

(ii) Given that $x=1$ and $\frac{d x}{d t}=1$ at $t=0$, find the particular solution to the differential equation, giving your answer in the form $x=f(t)$
(iii) Write your part (ii) answer in the form $R e^{k t} \cos (2 t-\alpha)$ where k, R and α are constants that you have determined the exact value of.
(iv) Sketch the curve with equation $x=f(t), 0 \leqslant t \leqslant \pi$, showing the coordinates, as multiples of π, of the points where the curve cuts the t-axis.

