Lesson 7

7.1 Dark Art Particular Integrals

Previously, the folowing table of suggested particular integrals was given. It has working well with the second order nonhomogeneous differential equations so far considered.

Form of $f(x)$	Form of PI
u	U
$u x+v$	$U x+V$
$u x^{r}+\ldots+v x+w$	$U x^{r}+\ldots+V x+W$
$u \cos k x$	$U \cos k x+V \sin k x$
$v \sin k x$	$U \cos k x+V \sin k x$
$u \cos k x+v \sin k x$	$U \cos k x+V \sin k x$
$u e^{k x}$	$U e^{k x}$
$u e^{-k x}$	$U e^{-k x}$

However, finding a particular integral can sometimes be something of a dark art and what a skilled mathematician chooses may not be obvious to beginners.

There is one aditional piece of "wisdom from the elders" that we will embrace.

Clash of Function : An "Advice" Algorithm

When solving an equation of the form,

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x), \text { where } a, b \text { and } c \text { are constants, }
$$

and having obtained the compementary function, if a piece, $g(x)$, of a proposed particular integral, $p(x)$, has already occured in the compementary function, modify the particular integral by multiplying it by x. That is, replace $p(x)$ with $x p(x)$.
Repeat this process, if necessary, until there is no piece in common in any part of the complementary function or particular integral.

Note: this advice algorithm was already at work within the complementary function when a repeated root occurred.

7.2 Example

Find the general solution to the differential equation,

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}=12
$$

What do you call the sudden urge to solve a differential equation ?

Calculust !

7.3 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 40

Question 1

Find the general solution to the differential equation,

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=e^{-3 x}
$$

Question 2

y satisfies the differential equation,

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}=2 x^{2}-x+1
$$

(i) Find the complementary function for this differential equation.
[3 marks]
(ii) Explain, with reference to your part (i) answer, why the "obvious" particular integral of $y=U x^{2}+V x+W$ is not suitable.
(iii) By using a suitable particular integral, find the general solution.

Question 3

Find the general solution to the differential equation,

$$
\frac{d^{2} y}{d x^{2}}+12 \frac{d y}{d x}+36 y=6 e^{-6 x}
$$

Question 4

Find the general solution to the differential equation,

$$
\frac{d^{2} y}{d x^{2}}+16 y=\cos 4 x
$$

