Lesson 8

Further A-Level Pure Mathematics, Core 2

Differential Equations II

8.2 Consolidation \#2

Abbreviated summary;

- Separating the variables can solve some first-order differential equations.
- A first-order differential equation of the form $\frac{d y}{d x}+P(x) y=Q(x)$ can be solved by multiplying every term by the integrating factor $I=e^{\int P(x) d x}$
- The nature of the roots α and β of the auxiliary equation determine the general solution to the second order differential equation $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0$ The general solution depends on the auxiliary equation's discriminant, D;
\diamond Case $1, \boldsymbol{D}>\boldsymbol{0}: y=A e^{\alpha x}+B e^{\beta x}, \quad$ for arbitrary A, B.
\diamond Case $2, \boldsymbol{D}=\mathbf{0}: y=(A+B x) e^{\alpha x}, \quad$ for arbitrary A, B.
\diamond Case $3, \boldsymbol{D}<\mathbf{0}: y=e^{p x}(A \cos q x+B \sin q x)$, for arbitrary A, B.
- Particular Integral suggestions,

Form of $f(x)$	Form of PI
$u x^{r}+\ldots+v x+w$	$U x^{r}+\ldots+V x+W$
$u \cos k x+v \sin k x$	$U \cos k x+V \sin k x$
$u e^{k x}$	$U e^{k x}$

- But watch out for...

Clash of Function : An "Advice" Algorithm

When solving an equation of the form,

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x), \text { where } a, b \text { and } c \text { are constants }
$$

and having obtained the complementary function, if a piece, $g(x)$, of a proposed particular integral, $p(x)$, has already occurred in the complementary function, modify the particular integral by multiplying it by x. That is, replace $p(x)$ with $x p(x)$.
Repeat this process, if necessary, until there is no piece in common in any part of the complementary function or particular integral.

8.2 Exercise

> Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

Find the general solution to the differential equation,

$$
y^{\prime \prime}+2 \sqrt{2} y^{\prime}+2 y=10
$$

Question 2

Find the general solution to the differential equation,

$$
y^{\prime \prime}-y^{\prime}-12 y=144 x
$$

Question 3

Find the general solution to the differential equation,

$$
y^{\prime \prime}-7 y^{\prime}+10 y=x e^{x}
$$

Assume the particular integral is of the form $(U x+V) e^{x}$

Question 4

(i) Find the value of U for which $y=U e^{2 x}$ is a particular integral of the differential equation $y^{\prime \prime}-4 y^{\prime}+13 y=e^{2 x}$
(ii) Using your answer to part (i), find the general solution to the differential equation.

Question 5

The differential equation $y^{\prime \prime}-4 y^{\prime}+4 y=4 e^{2 x}$ is to be solved.
(i) Find the complementary function.
(ii) Explain why neither $U e^{2 x}$ nor $U x e^{2 x}$ can be a particular integral.
[2 marks]

A particular integral has the form $U x^{2} e^{2 x}$
(iii) Determine the value of the constant U and find the general solution.

Question 6

Cameron, who is skilled in the dark arts, is about to advise you on the particular integral to use when solving the differential equation,

$$
y^{\prime \prime}+y=3 \sin 2 x
$$

Although your natural inclination is to assume a particular integral of the form $y=U \sin 2 x+V \cos 2 x$, Cameron assures you that $U \sin 2 x$ is sufficient.
(i) Given that Cameron speaks wise words, determine the value of U.
[4 marks]
(ii) Using your answer to part (i), find the general solution to the differential equation.

