Lesson 8

Further A-Level Pure Mathematics, Core 2 Differential Equations II

8.2 Consolidation #2

Abbreviated summary;

- Separating the variables can solve some first-order differential equations.
- A first-order differential equation of the form $\frac{dy}{dx} + P(x) y = Q(x)$ can be solved by multiplying every term by the integrating factor $I = e^{\int P(x) dx}$
- The nature of the roots α and β of the auxiliary equation determine the general

solution to the second order differential equation $a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0$ The general solution depends on the auxiliary equation's discriminant, D; \diamond Case 1, D > 0 : $y = A e^{\alpha x} + B e^{\beta x}$, for arbitrary A, B. \diamond Case 2, D = 0 : $y = (A + Bx) e^{\alpha x}$, for arbitrary A, B.

- \diamond Case 3, D < 0 : $y = e^{px} (A \cos qx + B \sin qx)$, for arbitrary A, B.
- Particular Integral suggestions,

Form of $f(x)$	Form of PI
$u x^r + \dots + vx + w$	$U x^r + \dots + V x + W$
$u\cos kx + v\sin kx$	$U\cos kx + V\sin kx$
$u e^{kx}$	$U e^{kx}$

• But watch out for...

Clash of Function : An "Advice" Algorithm

When solving an equation of the form,

$$a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = f(x)$$
, where *a*, *b* and *c* are constants,

and having obtained the complementary function,

if a piece, g(x), of a proposed particular integral, p(x), has already occurred in the complementary function, modify the particular integral by multiplying it by x. That is, replace p(x) with x p(x).

Repeat this process, if necessary, until there is no piece in common in any part of the complementary function or particular integral.

8.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable Marks Available : 50

Question 1

Find the general solution to the differential equation,

 $y'' + 2\sqrt{2} y' + 2y = 10$

[5 marks]

Find the general solution to the differential equation,

y'' - y' - 12y = 144x

Find the general solution to the differential equation,

$$y'' - 7y' + 10y = x e^{x}$$

Assume the particular integral is of the form $(Ux + V) e^{x}$

[10 marks]

(i) Find the value of U for which $y = Ue^{2x}$ is a particular integral of the differential equation $y'' - 4y' + 13y = e^{2x}$

[4 marks]

(**ii**) Using your answer to part (i), find the general solution to the differential equation.

The differential equation $y'' - 4y' + 4y = 4e^{2x}$ is to be solved. (i) Find the complementary function.

[3 marks]

(ii) Explain why neither Ue^{2x} nor $Ux e^{2x}$ can be a particular integral.

[2 marks]

A particular integral has the form $Ux^2 e^{2x}$ (iii) Determine the value of the constant U and find the general solution.

[6 marks]

Cameron, who is skilled in the dark arts, is about to advise you on the particular integral to use when solving the differential equation,

$$y'' + y = 3\sin 2x$$

Although your natural inclination is to assume a particular integral of the form $y = U \sin 2x + V \cos 2x$, Cameron assures you that $U \sin 2x$ is sufficient.

(i) Given that Cameron speaks wise words, determine the value of U.

[4 marks]

(ii) Using your answer to part (i), find the general solution to the differential equation.

[4 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk