2.8 Answers to 2.7 Exercise

Undergraduate Lectures in Mathematics
A Third Year Course
Graph Theory I

Answer 1

(i) $\quad \mathbf{A}(\mathrm{G} 17)=\left(\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$
(ii) $\quad \mathbf{A}^{2}(\mathrm{G} 17)=\left(\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)=\left(\begin{array}{llll}3 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 \\ 2 & 1 & 3 & 1 \\ 1 & 2 & 1 & 2\end{array}\right)$
(iii) The three walks of length 2 between vertex 1 and itself are,

Answer 2

$$
\mathbf{A}^{2}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)=\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
b_{n 1} & b_{n 2} & \ldots & b_{n n}
\end{array}\right)
$$

(i) $b_{11}=\left(a_{11} a_{11}\right)+\left(a_{12} a_{21}\right)+\left(a_{13} a_{31}\right)+\ldots+\left(a_{1 n} a_{n 1}\right)$ As A is symmetric, $a_{i j}=a_{j i}$, so $b_{11}=\left(a_{11}\right)^{2}+\left(a_{12}\right)^{2}+\left(a_{13}\right)^{2}+\ldots+\left(a_{1 n}\right)^{2}$
(ii) Now, a_{11} is always zero, and each of the squares $\left(a_{1 k}\right)^{2}$ for $2 \leqslant k \leqslant n$ will be 1 when there is an edge between vertices v_{1} and $v_{k}, 0$ otherwise. Thus b_{11} gives the degree of vertex v_{1} and also the number of walks of length 2 between v_{1} and itself.
(iii) $\operatorname{tr}\left(\mathbf{A}^{2}\right)$ will give the sum of the degrees of all vertices in G which, by Theorem 1.2, The Handshaking Lemma, is twice the number of edges of G.
[2 marks]
(iv) $\quad \mathbf{H}^{2}=\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 3 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2\end{array}\right)$
The graph H has 4 vertices and degree sequence ($1,2,2,3$).
This is enough to identify the graph as being G15

[2 marks]

Answer 3

(i) $\quad \mathbf{A}(\mathrm{G} 991)=\left(\begin{array}{lllllll}0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}\right) \quad \mathbf{A}(\mathrm{G} 1008)=\left(\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}\right)$
[2 marks]
(ii) $\quad \phi(\mathrm{G} 991)=\phi(\mathrm{G} 1008)=(x-1)^{2}(x+1)^{2}(x+2)\left(x^{2}-2 x-6\right)$

The two graphs are not isomorphic, yet their adjacency matrices have the same characteristic equation which, by definition, makes them cospectral.
[4 marks]
(iii) $\quad \mathbf{A}^{2}(\mathrm{G} 991)=\left(\begin{array}{lllllll}2 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 3 & 1 & 2 & 1 & 1 & 2 \\ 0 & 1 & 3 & 1 & 2 & 2 & 1 \\ 1 & 2 & 1 & 4 & 2 & 2 & 3 \\ 1 & 1 & 2 & 2 & 4 & 3 & 2 \\ 1 & 1 & 2 & 2 & 3 & 4 & 2 \\ 1 & 2 & 1 & 3 & 2 & 2 & 4\end{array}\right) \mathbf{A}^{2}(\mathrm{G} 1008)=\left(\begin{array}{lllllll}3 & 1 & 2 & 1 & 2 & 1 & 2 \\ 1 & 3 & 1 & 2 & 1 & 2 & 2 \\ 2 & 1 & 3 & 1 & 2 & 1 & 2 \\ 1 & 2 & 1 & 3 & 1 & 2 & 2 \\ 2 & 1 & 2 & 1 & 3 & 1 & 2 \\ 1 & 2 & 1 & 2 & 1 & 3 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 6\end{array}\right)$
$\phi_{2}(\mathrm{G} 991)=\phi_{2}(\mathrm{G} 1008)=(x-4)(x-1)^{4}\left(x^{2}-16 x+36\right)$

Comment : The hope that the characteristic polynomials of the squares of the adjacency matrices might distinguish between the cospectral graphs is fundamentally flawed because,
"The matrix \mathbf{A}^{n} has eigenvalue λ^{n} where λ is an eigenvalue of \mathbf{A} "
This statement may be proven using induction.
For a proof see Number Wonder's Matrix Algebra, Lecture 1, Question 5 https://www.NumberWonder.co.uk/Pages/Page9116.html

Answer 4

Theorem 2.4 : Counting walks between vertices
Given a simple graph G with adjacency matrix \mathbf{A}, raising \mathbf{A} to a positive integer power n gives a matrix where the entry $a_{i j}$ gives the number of walks of length n between the vertices v_{i} and v_{j}

Proof

To establish a basis for a proof by induction let $n=1$ giving $\mathbf{A}^{1}=\mathbf{A}$ which is the adjacency matrix for G in which entry $a_{i j}^{(1)}$ counts the number of walks of length 1 between v_{i} and v_{j}. As G is simple this count is either 1 if there is an edge between v_{i} and v_{j} or 0 if there is no edge.
The induction hypothesis is to assume true that when $n=k$ the number of walks of length k between v_{i} and v_{j} is the entry $a_{i j}^{(k)}$ in the matrix \mathbf{A}^{k}.
We can express a walk of length $k+1$ between v_{i} and v_{j} of a walk of length k between v_{i} and v_{u} followed by a walk of length 1 from v_{u} to v_{j}.
In consequence, the number of walks of length $k+1$ between v_{i} and v_{j} is the sum of all walks of length k from v_{i} to v_{u} multiplied by the number of ways to walk in one step from v_{u} to v_{j}. which is given by,

$$
\sum_{r=1}^{n} a_{i r}^{(k)} a_{r j}
$$

By the definition of matrix multiplication, this is the entry $a_{i j}^{(k+1)}$ in \mathbf{A}^{k+1} Therefore, if the result is true for $n=k$, then it is true for $n=k+1$ As the result has been shown to be true for $n=1$, the conclusion is that it is true for all positive integers by mathematical induction.

Answer 5

From Theorem 2.4 we know that, given a simple graph G with adjacency matrix A, the elements on the diagonal of \mathbf{A}^{3} (which are of the form $a_{i i}^{(3)}$) will be the walks of length 3 that start and finish at the same vertex. The only way that a walk of 3 steps can start and finish at the same vertex is if it is triangular. Let G be of order n.
The trace of \mathbf{A}^{3} is $\sum_{i=1}^{n} a_{i i}^{(3)}$ which will be the sum of all triangular walks in G but with each counted six times as shown below.

Hence $\operatorname{tr}\left(\mathbf{A}^{3}\right)$ gives six times the number of triangles in G.

Answer 6

Lemma 2.1 : Disconnected Detector

For a graph G of order n and adjacency matrix \mathbf{A}, calculate matrix \mathbf{S}_{n} where,

$$
\mathbf{S}_{n}=\mathbf{A}+\mathbf{A}^{2}+\mathbf{A}^{3}+\ldots+\mathbf{A}^{n}
$$

If there are any zeros in \mathbf{S}_{n} then the graph is not connected.

Proof

If a graph is connected then the maximum length of a trail (a walk that does not traverse any edge more than once) is n. From theorem 2.4 we know that entries in the matrix \mathbf{A}^{k} gives the number of walk of length k between all possible pairs of vertices in G. Thus a zero anywhere in the matrix \mathbf{S}_{n} is telling us that between a pair of vertices in the graph there is no walk of length $1,2,3, \ldots, n$. Thus there is a pair of vertices that have no way of connecting to each other.
In other words, the graph is disconnected.

Note that there are other, more efficient, methods (especially as n becomes large) to determine if a graph is connected or not and, indeed, to determine the number of component parts.

Answer 7

(i)

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right), & \left.\mathbf{A}^{2}=\left\lvert\, \begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 3 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 2 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 3 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 3 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 2
\end{array}\right.\right) \\
\mathbf{A}^{3} & =\left(\begin{array}{lllllll}
0 & 3 & 1 & 1 & 1 & 0 & 0 \\
3 & 2 & 4 & 5 & 1 & 1 & 1 \\
1 & 4 & 2 & 4 & 1 & 1 & 1 \\
1 & 5 & 4 & 2 & 5 & 1 & 1 \\
1 & 1 & 1 & 5 & 2 & 4 & 4 \\
0 & 1 & 1 & 1 & 4 & 2 & 3 \\
0 & 1 & 1 & 1 & 4 & 3 & 2
\end{array}\right), & \left.\mathbf{A}^{4}=\left\lvert\, \begin{array}{ccccccc}
3 & 2 & 4 & 5 & 1 & 1 & 1 \\
2 & 12 & 7 & 7 & 7 & 2 & 2 \\
4 & 7 & 8 & 7 & 6 & 2 & 2 \\
5 & 7 & 7 & 14 & 4 & 6 & 6 \\
1 & 7 & 6 & 4 & 13 & 6 & 6 \\
1 & 2 & 2 & 6 & 6 & 7 & 6 \\
1 & 2 & 2 & 6 & 6 & 6 & 7
\end{array}\right.\right)
\end{aligned}
$$

[4 marks]
(ii) The Shimbel Matrix, \mathbf{M}, is,

$$
\mathbf{M}=\left(\begin{array}{lllllll}
2 & 1 & 2 & 2 & 3 & 4 & 4 \\
1 & 2 & 1 & 1 & 2 & 3 & 3 \\
2 & 1 & 2 & 1 & 2 & 3 & 3 \\
2 & 1 & 1 & 2 & 1 & 2 & 2 \\
3 & 2 & 2 & 1 & 2 & 1 & 1 \\
4 & 3 & 3 & 2 & 1 & 2 & 1 \\
4 & 3 & 3 & 2 & 1 & 1 & 2
\end{array}\right)
$$

[3 marks]
(iii) Diameter is 4
[1 mark]

Note that another way to answer this question would be to use the adjacency matrix to draw the graph and then simply study the graph to obtain \mathbf{M}.

Answer 8

(i)

$$
(2,2,3,3)
$$

$$
\begin{aligned}
\mathbf{A}(\mathrm{G} 17) & =\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right) \\
\mathbf{A}^{2}(\mathrm{G} 17) & =\left(\begin{array}{llll}
3 & 1 & 2 & 1 \\
1 & 2 & 1 & 2 \\
2 & 1 & 3 & 1 \\
1 & 2 & 1 & 2
\end{array}\right)
\end{aligned}
$$

$$
\mathbf{A}^{3}(\mathrm{G} 17)=\left(\begin{array}{llll}
4 & 5 & 5 & 5 \\
5 & 2 & 5 & 2 \\
5 & 5 & 4 & 5 \\
5 & 2 & 5 & 2
\end{array}\right) \quad \mathbf{A}^{4}(\mathrm{G} 17)=\left(\begin{array}{cccc}
15 & 9 & 14 & 9 \\
9 & 10 & 9 & 10 \\
14 & 9 & 15 & 9 \\
9 & 10 & 9 & 10
\end{array}\right)
$$

By Algorithm 2.1, the number of simple 4-cycles is given by,

$$
\begin{aligned}
& \frac{1}{8}\left(\operatorname{tr}\left(\mathbf{A}^{4}\right)-2 \sum_{i=1}^{n}\left(\left(a_{i i}^{(2)}\right)\left(a_{i i}^{(2)}-1\right)\right)-\operatorname{tr}\left(\mathbf{A}^{2}\right)\right) \\
= & \frac{1}{8}(50-2(3 \times 2+2 \times 1+3 \times 2+2 \times 1)-10) \\
= & \frac{1}{8}(50-2 \times 16-10) \\
= & 1 \text { simple } 4 \text {-cycle }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \mathbf{A}=\left|\begin{array}{lllllllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right| \quad \mathbf{A}^{2}=\left|\begin{array}{lllllllllll}
3 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 1 & 0 & 1 \\
0 & 4 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 \\
2 & 0 & 3 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 \\
0 & 2 & 0 & 4 & 0 & 2 & 0 & 2 & 0 & 2 & 0 \\
2 & 0 & 1 & 0 & 3 & 0 & 2 & 0 & 2 & 0 & 1 \\
0 & 2 & 0 & 2 & 0 & 3 & 0 & 2 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 2 & 0 & 3 & 0 & 1 & 0 & 2 \\
0 & 2 & 0 & 2 & 0 & 2 & 0 & 4 & 0 & 2 & 0 \\
1 & 0 & 2 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 2 \\
0 & 2 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 3 & 0 \\
1 & 0 & 2 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 3
\end{array}\right| \\
& 2 \sum_{i=1}^{n}\left(\left(a_{i i}^{(2)}\right)\left(a_{i i}^{(2)}-1\right)\right) \text { "twice the sum of the triangularised degrees" } \\
& =2(6+12+6+12+6+6+6+12+6+6+6 \\
& =2 \times 84 \\
& =168
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{tr}\left(\mathbf{A}^{2}\right)=36 \text { "the sum of all degrees" } \\
& \mathbf{A}^{3}=\left|\begin{array}{ccccccccccc|}
0 & 8 & 0 & 8 & 0 & 7 & 0 & 6 & 0 & 4 & 0 \\
8 & 0 & 8 & 0 & 6 & 0 & 8 & 0 & 6 & 0 & 8 \\
0 & 8 & 0 & 8 & 0 & 4 & 0 & 6 & 0 & 7 & 0 \\
8 & 0 & 8 & 0 & 8 & 0 & 6 & 0 & 8 & 0 & 6 \\
0 & 6 & 0 & 8 & 0 & 7 & 0 & 8 & 0 & 4 & 0 \\
7 & 0 & 4 & 0 & 7 & 0 & 7 & 0 & 4 & 0 & 4 \\
0 & 8 & 0 & 6 & 0 & 7 & 0 & 8 & 0 & 4 & 0 \\
6 & 0 & 6 & 0 & 8 & 0 & 8 & 0 & 8 & 0 & 8 \\
0 & 6 & 0 & 8 & 0 & 4 & 0 & 8 & 0 & 7 & 0 \\
4 & 0 & 7 & 0 & 4 & 0 & 4 & 0 & 7 & 0 & 7 \\
0 & 8 & 0 & 6 & 0 & 4 & 0 & 8 & 0 & 7 & 0
\end{array}\right| \\
& \mathbf{A}^{4}=\left|\begin{array}{ccccccccccc}
\\
23 & 0 & 20 & 0 & 21 & 0 & 21 & 0 & 18 & 0 & 18 \\
0 & 32 & 0 & 28 & 0 & 22 & 0 & 28 & 0 & 22 & 0 \\
20 & 0 & 23 & 0 & 18 & 0 & 18 & 0 & 21 & 0 & 21 \\
0 & 28 & 0 & 32 & 0 & 22 & 0 & 28 & 0 & 22 & 0 \\
21 & 0 & 18 & 0 & 23 & 0 & 21 & 0 & 20 & 0 & 18 \\
0 & 22 & 0 & 22 & 0 & 21 & 0 & 22 & 0 & 12 & 0 \\
21 & 0 & 18 & 0 & 21 & 0 & 23 & 0 & 18 & 0 & 20 \\
0 & 28 & 0 & 28 & 0 & 22 & 0 & 32 & 0 & 22 & 0 \\
18 & 0 & 21 & 0 & 20 & 0 & 18 & 0 & 23 & 0 & 21 \\
0 & 22 & 0 & 22 & 0 & 12 & 0 & 22 & 0 & 21 & 0 \\
18 & 0 & 21 & 0 & 18 & 0 & 20 & 0 & 21 & 0 & 23
\end{array}\right|
\end{aligned}
$$

By Algorithm 2.1, the number of simple 4-cycles is given by,

$$
\begin{aligned}
& \frac{1}{8}\left(\operatorname{tr}\left(\mathbf{A}^{4}\right)-2 \sum_{i=1}^{n}\left(\left(a_{i i}^{(2)}\right)\left(a_{i i}^{(2)}-1\right)\right)-\operatorname{tr}\left(\mathbf{A}^{2}\right)\right) \\
= & \frac{1}{8}(276-168-36) \\
= & 9 \text { simple 4-cycles }
\end{aligned}
$$

From an inspection of the graph it can be seen that this is correct.

[4 marks]

Answer 9

(i) $\quad \mathbf{A}\left(K_{4}\right)=\left(\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right) \quad \mathbf{A}^{2}\left(K_{4}\right)=\left(\begin{array}{llll}3 & 2 & 2 & 2 \\ 2 & 3 & 2 & 2 \\ 2 & 2 & 3 & 2 \\ 2 & 2 & 2 & 3\end{array}\right)$

$$
\mathbf{A}^{3}\left(K_{4}\right)=\left(\begin{array}{cccc}
6 & 7 & 7 & 7 \\
7 & 6 & 7 & 7 \\
7 & 7 & 6 & 7 \\
7 & 7 & 7 & 6
\end{array}\right) \quad \mathbf{A}^{4}\left(K_{4}\right)=\left(\begin{array}{cccc}
21 & 20 & 20 & 20 \\
20 & 21 & 20 & 20 \\
20 & 20 & 21 & 20 \\
20 & 20 & 20 & 21
\end{array}\right)
$$

By Algorithm 2.1, the number of simple 4-cycles is given by,

$$
\begin{aligned}
& \frac{1}{8}\left(\operatorname{tr}\left(\mathbf{A}^{4}\right)-2 \sum_{i=1}^{n}\left(\left(a_{i i}^{(2)}\right)\left(a_{i i}^{(2)}-1\right)\right)-\operatorname{tr}\left(\mathbf{A}^{2}\right)\right) \\
& \quad=\frac{1}{8}(84-2 \times 24-12) \\
& \quad=3 \text { simple } 4 \text {-cycles }
\end{aligned}
$$

[2 marks]
(ii) $\quad \mathbf{A}\left(K_{7}\right)=\left|\begin{array}{llllll}0 & & & & & \\ & 0 & & & 1 & \\ & & 0 & & & \\ & & & 0 & & \\ \\ 1 & & & 0 & & \\ & & & & & 0 \\ \hline\end{array}\right| \mathbf{A}^{2}\left(K_{7}\right)=\left|\begin{array}{llllll}6 & & & & & \\ & 6 & & & 5 & \\ & & 6 & & & \\ & & 6 & & \\ & 5 & & 6 & & \\ & & & & & 6\end{array}\right|$

By Algorithm 2.1, the number of simple 4-cycles is given by,

$$
\begin{aligned}
& \frac{1}{8}\left(\operatorname{tr}\left(\mathbf{A}^{4}\right)-2 \sum_{i=1}^{n}\left(\left(a_{i i}^{(2)}\right)\left(a_{i i}^{(2)}-1\right)\right)-\operatorname{tr}\left(\mathbf{A}^{2}\right)\right) \\
& =\frac{1}{8}(1302-2 \times 210-42) \\
& =105 \text { simple } 4 \text {-cycles }
\end{aligned}
$$

(iii) This is about generalising parts (i) and (ii)

$$
\begin{aligned}
& \mathbf{A}^{3}\left(K_{n}\right)=\left|\begin{array}{ccccc}
(n-1)(n-2) & & & & \\
& \ldots & & & (n+1)+(n-2)^{2} \\
& & \ldots & & \\
& & \cdots & & \\
(n+1)+(n-2)^{2} & & \cdots & & \\
& & & & \\
& & & & (n-1)(n-2)
\end{array}\right| \\
& \mathrm{A}^{4}\left(K_{n}\right)=\left|\begin{array}{rrrr}
(n-1)^{2}+(n-1)(n-2)^{2} & & \\
\ldots & & 2(n-1)(n-2)+(n-2)^{3} \\
2(n-1)(n-2)+(n-2)^{3} & \ldots & \ldots \\
& & \ldots & \ldots \\
(n-1)^{2}+(n-1)(n-2)^{2}
\end{array}\right|
\end{aligned}
$$

By Algorithm 2.1, the number of simple 4-cycles is given by,

$$
\begin{aligned}
& \frac{1}{8}\left(\operatorname{tr}\left(\mathbf{A}^{4}\right)-2 \sum_{i=1}^{n}\left(\left(a_{i i}^{(2)}\right)\left(a_{i i}^{(2)}-1\right)\right)-\operatorname{tr}\left(\mathbf{A}^{2}\right)\right) \\
= & \frac{1}{8}\left(n(n-1)^{2}+n(n-1)(n-2)^{2}-2(n-1)(n-2) n-n(n-1)\right) \\
= & \frac{n(n-1)}{8}\left((n-1)+(n-2)^{2}-2(n-2)-1\right) \\
= & \frac{n(n-1)}{8}\left(n-1+n^{2}-4 n+4-2 n+4-1\right) \\
= & \frac{n(n-1)}{8}\left(n^{2}-5 n+6\right) \\
= & \frac{n(n-1)(n-2)(n-3)}{8} \\
= & \frac{n!}{8(n-4)!} \text { simple 4-cycles }
\end{aligned}
$$

There is a well known result that the number of simple m-cycles in K_{n} is given by $\frac{n!(k-1)!}{2 k!(n-k)!}$ which for $k=4$ matches our result.

Answer 10

$$
\mathbf{A}^{2}=\left|\begin{array}{llllllllll}
3 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 3 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 3 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 3 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 3 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 3 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 3 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 3 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 3 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 3
\end{array}\right|
$$

By Algorithm 2.2, the number of simple 5-cycles is given by,

$$
\begin{aligned}
& \frac{1}{10}\left(\operatorname{tr}\left(\mathbf{A}^{5}\right)-5 \sum_{i=1}^{n}\left(\left(a_{i i}^{(3)}\right)\left(a_{i i}^{(2)}-2\right)\right)-5 \operatorname{tr}\left(\mathbf{A}^{3}\right)\right) \\
& \quad=\frac{1}{10}(120-0-0) \\
& \quad=12 \text { simple } 5 \text {-cycles }
\end{aligned}
$$

Answer 11

(i) Each graph has 12 vertices. The "number of vertices" property has not detected any non-isomorphisms.
[1 mark]
(ii) Each graph has 18 edges. The "number of edges" property has not detected any non-isomorphisms.
[2 marks]
(iii) Each graph is 3-regular so the degree sequence of each is simply $(3,3,3,3,3,3,3,3,3,3,3,3)$. The "degree sequence" property has not detected any non-isomorphisms.
(iv)

$$
\mathbf{R}=\left|\begin{array}{llllllllllll}
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right|
$$

(v)

$$
\left.\mathbf{R}^{3}=\left\lvert\, \begin{array}{llllllllllll}
0 & 5 & 1 & 6 & 2 & 0 & 6 & 1 & 1 & 2 & 2 & 1 \\
5 & 0 & 2 & 1 & 1 & 5 & 1 & 2 & 2 & 1 & 5 & 2 \\
1 & 2 & 0 & 5 & 5 & 1 & 2 & 1 & 5 & 1 & 2 & 2 \\
6 & 1 & 5 & 0 & 0 & 2 & 1 & 6 & 2 & 2 & 1 & 1 \\
2 & 1 & 5 & 0 & 2 & 5 & 1 & 1 & 1 & 2 & 2 & 5 \\
0 & 5 & 1 & 2 & 5 & 2 & 1 & 1 & 2 & 2 & 1 & 5 \\
6 & 1 & 2 & 1 & 1 & 1 & 0 & 6 & 5 & 1 & 2 & 1 \\
1 & 2 & 1 & 6 & 1 & 1 & 6 & 0 & 2 & 1 & 5 & 1 \\
1 & 2 & 5 & 2 & 1 & 2 & 5 & 2 & 0 & 5 & 1 & 1 \\
2 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & 5 & 0 & 5 & 5 \\
2 & 5 & 2 & 1 & 2 & 1 & 2 & 5 & 1 & 5 & 0 & 1 \\
1 & 2 & 2 & 1 & 5 & 5 & 1 & 1 & 1 & 5 & 1 & 2
\end{array}\right.\right)
$$

$$
\mathbf{B}^{3}=\left|\begin{array}{llllllllllll}
2 & 5 & 0 & 1 & 1 & 2 & 5 & 5 & 1 & 2 & 2 & 1 \\
5 & 0 & 5 & 1 & 3 & 1 & 2 & 1 & 3 & 0 & 1 & 5 \\
0 & 5 & 0 & 6 & 0 & 3 & 1 & 2 & 1 & 6 & 2 & 1 \\
1 & 1 & 6 & 0 & 6 & 1 & 1 & 1 & 2 & 1 & 5 & 2 \\
1 & 3 & 0 & 6 & 0 & 5 & 0 & 2 & 1 & 6 & 1 & 2 \\
2 & 1 & 3 & 1 & 5 & 0 & 5 & 1 & 3 & 0 & 1 & 5 \\
5 & 2 & 1 & 1 & 0 & 5 & 2 & 5 & 1 & 2 & 2 & 1 \\
5 & 1 & 2 & 1 & 2 & 1 & 5 & 2 & 5 & 0 & 0 & 3 \\
1 & 3 & 1 & 2 & 1 & 3 & 1 & 5 & 0 & 5 & 5 & 0 \\
2 & 0 & 6 & 1 & 6 & 0 & 2 & 0 & 5 & 0 & 2 & 3 \\
2 & 1 & 2 & 5 & 2 & 1 & 2 & 0 & 5 & 2 & 0 & 5 \\
1 & 5 & 1 & 2 & 1 & 5 & 1 & 3 & 0 & 3 & 5 & 0
\end{array}\right|
$$

$$
\operatorname{tr}\left(\mathbf{B}^{3}\right)=6 \Leftrightarrow 1 \text { triangle }
$$

$$
\mathbf{G}^{3}=\left(\begin{array}{llllllllllll}
0 & 5 & 1 & 1 & 5 & 2 & 5 & 1 & 3 & 0 & 3 & 1 \\
5 & 0 & 6 & 3 & 1 & 1 & 0 & 2 & 0 & 6 & 1 & 2 \\
1 & 6 & 2 & 5 & 2 & 1 & 1 & 0 & 2 & 1 & 6 & 0 \\
1 & 3 & 5 & 2 & 5 & 0 & 1 & 1 & 1 & 2 & 5 & 1 \\
5 & 1 & 2 & 5 & 0 & 5 & 2 & 1 & 2 & 2 & 1 & 1 \\
2 & 1 & 1 & 0 & 5 & 0 & 1 & 7 & 0 & 2 & 1 & 7 \\
5 & 0 & 1 & 1 & 2 & 1 & 0 & 7 & 0 & 3 & 0 & 7 \\
1 & 2 & 0 & 1 & 1 & 7 & 7 & 0 & 7 & 0 & 1 & 0 \\
3 & 0 & 2 & 1 & 2 & 0 & 0 & 7 & 0 & 5 & 0 & 7 \\
0 & 6 & 1 & 2 & 2 & 2 & 3 & 0 & 5 & 0 & 6 & 0 \\
3 & 1 & 6 & 5 & 1 & 1 & 0 & 1 & 0 & 6 & 2 & 1 \\
1 & 2 & 0 & 1 & 1 & 7 & 7 & 0 & 7 & 0 & 1 & 0
\end{array}\right)
$$

$$
\operatorname{tr}\left(\mathbf{G}^{3}\right)=6 \Leftrightarrow 1 \text { triangle }
$$

The "triangle count" property has not detected any non-isomorphisms.
(vi)
The characteristic equations are:
For \mathbf{R} :

$$
(x+2)\left(x^{4}+x^{3}-4 x^{2}-x+2\right)\left(x^{5}-7 x^{3}+x^{2}+11 x-4\right)
$$

For B:

$$
(x-3)(x+1)\left(x^{2}-2\right)\left(x^{3}+x^{2}-2 x-1\right)\left(x^{5}+x^{4}-8 x^{3}-3 x^{2}+16 x-6\right)
$$

For G:

$$
(x-3) x^{2}\left(x^{9}+3 x^{8}-9 x^{7}-29 x^{6}+22 x^{5}+82 x^{4}-17 x^{3}-77 x^{2}+3 x+13\right)
$$

These show that none of the graphs are isomorphic to any of the others.

