Iteration Iteration ITERATION
 Iteration

Iteration
ITERATION
Iteration
Iteration
Iteration

THE COLLATZ CONJECTURE STATES THAT IF YOU PICK A NUMBER, AND IF ITSEVEN DIVIDE ITBY Two AND IF IT'S ODD MULTIPLY ITBY THREE AND ADD ONE, AND YOU REPEAT THIS PROCEDURE LING ENOUGH, EVENTUALY YOUR FRIENDS WILL STOP CAUING TO SEE IF YOU WANT TO HANG OUT.

ITERATION

Lesson 1

GCSE Mathematics
Iteration

1.1 What is a Iteration?

An iterative process is one in which you repeatedly carry out the same set of instructions. The idea of iteration has been around for over two hundred years but it is only since the invention of the desktop computer in the 1980s that the subject has become mainstream mathematics. A flowchart provides a convenient way of describing an iteration.

1.2 Example

Consider the following flowchart,

This flowchart generates a sequence of numbers.
We can give the sequence a name; sequence U.
The first term in sequence U is denoted U_{1}
The second term in sequence U is denoted U_{2}
And so on...
Complete this table to show the first eight terms in sequence U

U_{1}	U_{2}	U_{3}	U_{4}	U_{5}	U_{6}	U_{7}	U_{8}
34							
$\left[\begin{array}{l}\text { [6 marks] }\end{array}\right.$							

1.3 Exercise

Non-Calculator

Marks Available : 40

Question 1

Consider the following flowchart,

This flowchart generates a sequence of numbers.
We can give the sequence a name; sequence V
The first term in sequence V is denoted V_{1}
The second term in sequence V is denoted V_{2}
And so on...
Complete this table to show the first seven terms in sequence V

V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}	V_{7}
366						

[6 marks]

Question 2

This question will tell you how to get terms in sequence Q.
Start with the number 1, that is $Q_{1}=1$
To get a next term, double the previous term.
What is Q_{6} ?

Question 3

Consider the following flowchart,

This flowchart generates the sequence of numbers D.
Complete this table to show the first seven terms in sequence D

D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}
189						

[6 marks]

Question 4

This question will tell you how to get terms in sequence A.
Start with the number one million, that is $A_{1}=1000000$
To get a next term, divide the previous term by 10 .
(i) What is the value of A_{2} ?
(ii) What is the value of A_{3} ?
(iii) What is the value of A_{7} ?
(iv) What is the value of A_{9} ?

Question 5

Consider the following flowchart,

This flowchart generates the sequence of numbers P
Complete this table to show the first ten terms in sequence P

[6 marks]

Question 6

In my garden on Monday at noon there are 100 snails.
At noon each day, there are 20% more snails than at noon the day before.
How many snails are in my garden at noon on Wednesday that week ?

Question 7

This flowchart which behaves in a different manner to the others in this exercise.
Call the sequence of numbers generated by this flowchart Z
Complete this table to show the first ten terms in sequence Z

Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}	Z_{8}	Z_{9}	Z_{10}

[6 marks]

Question 8

Explain how to modify this "scratch" programming loop to draw a hexagon.

Question 9

See if you can you handle this question without using a calculator.
(It's all to do with powers of 2)

This flowchart generates the sequence of numbers C
Complete this table to show the first five terms in sequence C

P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
$\frac{1}{16}$				

