Lesson 3

3.1 Coding The Flowchart

Although a flowchart is an easily understood way of describing an iterative process it takes up a lot of space on the page and is time consuming to draw. Mathematicians have devised a much more clever way of describing an iteration. Here's how they translate two key phrases about a sequence U into mathematics,

"the term of focus" becomes U_n

"the next term (one step on from the term of focus)" becomes U_{n+1}

Complete the following table;

п	U_n	U_{n+1}
1	${U}_1$	$U_{1+1} = U_2$
2		
3		
8		
43		

[3 marks]

3.2 Example

A number sequence, U, has the following iterative description,

$$U_1 = 0 \qquad U_{n+1} = 3 U_n + 1$$

Note the difference in meaning between n + 1 in a small font size with that in larger. Complete the table to show the first eight terms of the sequence.

${U}_1$	U_2	U_3	${U}_4$	U_5	U_6	U_7

[4 marks]

3.3 Exercise

Non-Calculator

Marks Available : 50

Question 1

A number sequence, A, has the following iterative description,

$$A_1 = 2 \qquad A_{n+1} = 2A_n - 1$$

Complete the table to show the first seven terms of the sequence.

A_1	A_2	A_3	A_4	A_5	A_6	A_7

^{[4} marks]

Question 2

A number sequence, *H*, has the following iterative description,

$$H_1 = 11 \qquad H_{n+1} = 2A_n - 10$$

Complete the table to show the first eight terms of the sequence.

H_1	H_2	H_3	H_4	H_5	H_6	H_7	H_8

[4 marks]

Question 3

Professor RE Peat believes that the following iteration will always generate a prime number.

$$P_1 = 5$$
 $P_{n+1} = 2 P_n - 3$

(i) Complete the table to show the first six terms of the sequence.

<i>P</i> ₁	P_2	P_3	P_4	P_5	<i>P</i> ₆

[4 marks]

(ii) Considering just the six terms from part (i), might the professor be correct? Give a reason for your answer.

Question 4

A number sequence, B, has the following iterative description,

$$B_1 = 10 \qquad B_{n+1} = 3 B_n - 10$$

Complete the table to show the first seven terms of the sequence.

B_1	B_2	<i>B</i> ₃	B_4	<i>B</i> ₅	<i>B</i> ₆	B_7

^{[4} marks]

Question 5

Last lesson we looked at an unsolved mathematics problem; the Collatz conjecture. It had a flowchart that did a different calculation for the next term in the sequence depending upon if the "number in mind" was even or odd. Here is how that flowchart is described mathematically,

$$C_{n+1} = \begin{cases} \frac{C_n}{2} & \text{if } C_n \text{ is even} \\ \\ 3 C_n + 1 & \text{if } C_n \text{ is odd} \end{cases}$$

Starting with 15, work out the 8 missing terms before this new branch of tree joins onto the main trunk (worked out last lesson).

[6 marks]

Question 6

It's natural to wonder if the Collatz conjecture holds for other similar iterations. Consider this very similar rule where the "add 1" is changed to "subtract 1".

$$L_{n+1} = \begin{cases} \frac{L_n}{2} & \text{if } L_n \text{ is even} \\ 3L_n - 1 & \text{if } L_n \text{ is odd} \end{cases}$$

(i) On the following diagram write out the numbers generated.if $L_1 = 15$

This suggests that the new rule may be behaving much like the old. [6 marks]

(ii) On the following diagram write out the numbers generated.if $L_1 = 9$

[6 marks]

(iii) Add an arrow to the last circle of your part (ii) answer to show how it connects back to a previous circle in the sequence.

[1 mark]

(iv) Explain how your part (ii) and (iii) answers show that the Collatz conjecture is FALSE for the adjusted rule.

[2 marks]

- (**v**) On the following diagram write out the numbers generated.if $L_1 = 17$

(vi) Add an arrow to the last circle of your part (v) answer to show how it connects back to a previous circle in the sequence.

[1 mark]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk