Lesson 3

GCSE Mathematics

Iteration

3.1 Coding The Flowchart

Although a flowchart is an easily understood way of describing an iterative process it takes up a lot of space on the page and is time consuming to draw. Mathematicians have devised a much more clever way of describing an iteration. Here's how they translate two key phrases about a sequence U into mathematics,
"the term of focus" becomes U_{n}
"the next term (one step on from the term of focus)" becomes U_{n+1}

Complete the following table;

n	U_{n}	U_{n+1}
1	U_{1}	$U_{1+1}=U_{2}$
2		
3		
\ldots		
8		
\ldots		
43		

3.2 Example

A number sequence, U, has the following iterative description,

$$
U_{1}=0 \quad U_{n+1}=3 U_{n}+1
$$

Note the difference in meaning between $n+1$ in a small font size with that in larger. Complete the table to show the first eight terms of the sequence.

3.3 Exercise

Non-Calculator

Marks Available : 50

Question 1

A number sequence, A, has the following iterative description,

$$
A_{1}=2 \quad A_{n+1}=2 A_{n}-1
$$

Complete the table to show the first seven terms of the sequence.

A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}

[4 marks]

Question 2

A number sequence, H, has the following iterative description,

$$
H_{1}=11 \quad H_{n+1}=2 A_{n}-10
$$

Complete the table to show the first eight terms of the sequence.

[4 marks]

Question 3

Professor RE Peat believes that the following iteration will always generate a prime number.

$$
P_{1}=5 \quad P_{n+1}=2 P_{n}-3
$$

(i) Complete the table to show the first six terms of the sequence.

P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}

[4 marks]
(ii) Considering just the six terms from part (i), might the professor be correct? Give a reason for your answer.

Question 4

A number sequence, B, has the following iterative description,

$$
B_{1}=10 \quad B_{n+1}=3 B_{n}-10
$$

Complete the table to show the first seven terms of the sequence.

B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}

[4 marks]

Question 5

Last lesson we looked at an unsolved mathematics problem; the Collatz conjecture. It had a flowchart that did a different calculation for the next term in the sequence depending upon if the "number in mind" was even or odd.
Here is how that flowchart is described mathematically,

$$
C_{n+1}= \begin{cases}\frac{C_{n}}{2} & \text { if } C_{n} \text { is even } \\ 3 C_{n}+1 & \text { if } C_{n} \text { is odd }\end{cases}
$$

Starting with 15 , work out the 8 missing terms before this new branch of tree joins onto the main trunk (worked out last lesson).

Question 6

It's natural to wonder if the Collatz conjecture holds for other similar iterations. Consider this very similar rule where the "add 1 " is changed to "subtract 1 ".

$$
L_{n+1}= \begin{cases}\frac{L_{n}}{2} & \text { if } L_{n} \text { is even } \\ 3 L_{n}-1 & \text { if } L_{n} \text { is odd }\end{cases}
$$

(i) On the following diagram write out the numbers generated.if $L_{1}=15$

This suggests that the new rule may be behaving much like the old.
(ii) On the following diagram write out the numbers generated.if $L_{1}=9$

[6 marks]
(iii) Add an arrow to the last circle of your part (ii) answer to show how it connects back to a previous circle in the sequence.
(iv) Explain how your part (ii) and (iii) answers show that the Collatz conjecture is FALSE for the adjusted rule.
[2 marks]
(v) On the following diagram write out the numbers generated.if $L_{1}=17$

[10 marks]
(vi) Add an arrow to the last circle of your part (v) answer to show how it connects back to a previous circle in the sequence.
[1 mark]

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "Independent School of the Year 2020"

