4.1 Fraction Frolics

To date, our iterations been restricted to numbers that are integers, \mathbb{Z}.

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

However, in this lesson we will look at iterations that live amongst the rational numbers, \mathbb{Q}. Examples of rational numbers include,

$$
\frac{2}{3}, \frac{7}{2}, \frac{6}{1},-\frac{1}{3}, \frac{0}{1}
$$

A rational number is a number that can be written as one integer divided by another (but not divided by zero, as division by zero is not allowed).

4.2 Examples \#1
 (Non-Calculator)

Calculate and simplify,
(i) $\frac{3}{7} \times \frac{4}{5}$
(ii) $\frac{5}{12} \times \frac{4}{7}$
(iii) $\frac{4}{7} \times 2$
(iv) $\frac{12}{13} \times 13$

4.3 Examples \#2
 (Non-Calculator)

Calculate and simplify,
(i) $12\left(\frac{1}{4}+2\right)$
(ii) $\left(\frac{4}{5}+\frac{1}{3}\right) \times 15$
(iii) $8\left(2+\frac{3}{8}\right)$
(iv) $\left(\frac{3}{5}+2\right) \times 5$

4.4 An Iteration Involving Fractions

A sequence of numbers has the iterative rule

$$
U_{1}=\frac{3}{5} \quad U_{n+1}=\frac{1}{2} U_{n}
$$

Use the space below to work out the first six terms of this iterative sequence and put your answers in the table at the bottom of the page.

U_{1}	U_{2}	U_{3}	U_{4}	U_{5}	U_{6}

4.5 Exercise

Non-Calculator

Marks Available : 50

Question 1

Calculate and simplify,
(i) $\frac{3}{11} \times \frac{5}{7}$
(ii) $\frac{4}{9} \times \frac{3}{5}$
(iii) $\frac{5}{13} \times 2$
(iv) $\frac{10}{17} \times 17$

Question 2

First expand the brackets, then simplify,
(i) $15\left(\frac{1}{5}+2\right)$
(ii) $\left(\frac{3}{4}+\frac{1}{6}\right) \times 12$
(iii) $7\left(3+\frac{4}{7}\right)$
(iv) $\left(\frac{5}{6}+2\right) \times 6$

Question 3
First expand the brackets, then simplify,
(i) $\frac{2}{3}\left(2+\frac{1}{2}\right)$
(ii) $\frac{3}{5}\left(\frac{4}{3}+3\right)$

Question 4

A sequence of numbers has the iterative rule

$$
A_{1}=\frac{1}{2} \quad A_{n+1}=\frac{1}{2} A_{n}
$$

Use the space below to work out the first six terms of this iterative sequence then put your answers in the table.

A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}

[6 marks]

Question 5

A sequence of numbers has the iterative rule

$$
B_{1}=\frac{16}{81} \quad B_{n+1}=\frac{3}{2} B_{n}
$$

Use the space below to work out the first eight terms of this iterative sequence then put your answers in the table.

B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}
$\left[\begin{array}{ll}{[6 \text { marks] }}\end{array}\right.$							

Question 6

First expand the brackets, then simplify,
(i) $3\left(2+\frac{1}{3}\right)$
(ii) $\frac{3}{3} \times \frac{\left(2+\frac{1}{3}\right)}{1}$

Question 7

First expand the brackets, then simplify,
(i) $5\left(3+\frac{2}{5}\right)$
(ii) $\frac{5}{5} \times \frac{\left(3+\frac{2}{5}\right)}{1}$

Question 8

First expand the brackets, then simplify,
(i) $\left(2+\frac{3}{7}\right) \times 7$
(ii) $\frac{\left(2+\frac{3}{7}\right)}{1} \times \frac{7}{7}$

Question 9

Calculate $4+\frac{3}{5}$ by

- Putting brackets around the question
- Putting the bracketed question all over 1
- Multiplying by $\frac{5}{5}$

Question 10

Calculate $3+\frac{4}{7}$ by

- Putting brackets around the question
- Putting the bracketed question all over 1
- Multiplying by $\frac{7}{7}$

[4 marks]

Question 11

A sequence of numbers has the iterative rule

$$
G_{1}=\frac{1}{4} \quad G_{n+1}=\frac{2}{3} G_{n}
$$

Use the space below to work out the first six terms of this iterative sequence then put your answers in the table.

G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}
$[66$ marks]					

