## Lesson 5

### 5.1 The Many Faces of One



In mathematics, all numbers are important but some are more special than others. In today's lesson extensive use will be made of the fact that when anything is multiplied by one it does nothing.
You may be wondering why, if multiplying by one "does nothing", it's of any use at all. The usefulness of one comes from the fact that it has many faces.

### 5.2 Example

Determine the first six terms of the sequence with term-to-term description,

$$
U_{1}=\frac{1}{3}, \quad U_{n+1}=\frac{2-U_{n}}{2}
$$

| $U_{1}$ | $U_{2}$ | $U_{3}$ | $U_{4}$ | $U_{5}$ | $U_{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

### 5.3 Exercise

Non-Calculator<br>Marks Available : 50

## Question 1

Simplify,
(i) $14 \times \frac{5}{7}$
(ii) $5\left(3+\frac{1}{5}\right)$
(iii) $\left(\frac{5}{7}+3\right) \times 7$
(iv) $\quad\left(7+\frac{3}{4}\right) \times 4$

## Question 2

Each of the following calculations has an answer that is a rational number.
That is, a number in the form $\frac{p}{q}$ for integer $p$ and $q$ with $q \neq 0$
For each, determine what that rational number is.
(i) $\frac{\left(1+\frac{1}{2}\right)}{13} \times \frac{2}{2}$
(ii) $\frac{\left(3+\frac{1}{4}\right)}{7} \times \frac{4}{4}$
[ 2 marks ]
( iii) $\frac{\left(\frac{5}{7}+2\right)}{6} \times \frac{7}{7}$
(iv ) $\frac{\left(11+\frac{5}{9}\right)}{7}$
(v) $\frac{\left(4+\frac{3}{8}\right)}{8}$
[ 2 marks ]
(vi) $\frac{\left(\frac{8}{3}+7\right)}{4}$

## Question 3

(i) The following sum has an answer that is a rational number.

That is, a number in the form $\frac{p}{q}$ for integer $p$ and $q$ with $q \neq 0$
Determine what that rational number is.
$\frac{\left(3-\frac{1}{2}\right)}{2}$
(ii) Consider the iteration, $A_{1}=\frac{1}{2}, A_{n+1}=\frac{3-A_{n}}{2}$

Use the space below to work out the first six terms of this iterative sequence and put your answers in the table towards the bottom of the page.

| $A_{1}$ | $A_{2}$ | $A_{3}$ | $A_{4}$ | $A_{5}$ | $A_{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

( iii ) From looking at your table of results, and spotting a pattern, write down what the next three terms, $A_{7}, A_{8}$ and $A_{9}$ are likely to be.

## Question 4

(i) The following sum has an answer that is a rational number.

That is, a number in the form $\frac{p}{q}$ for integer $p$ and $q$ with $q \neq 0$
Determine what that rational number is.
$\frac{\left(1-\frac{3}{10}\right)}{2}$
[ 2 marks ]
(ii) Consider the iteration, $B_{1}=\frac{3}{10}, B_{n+1}=\frac{1-B_{n}}{2}$

Use the space below to work out the first six terms of this iterative sequence and put your answers in the table towards the bottom of the page.

| $B_{1}$ | $B_{2}$ | $B_{3}$ | $B_{4}$ | $B_{5}$ | $B_{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

[ 7 marks ]
( iii ) From looking at your table of results, and spotting a pattern, write down what the next three terms, $B_{7}, B_{8}$ and $B_{9}$ are likely to be.

## Question 5

(i) The following sum has an answer that is a rational number.

That is, a number in the form $\frac{p}{q}$ for integer $p$ and $q$ with $q \neq 0$
Determine what that rational number is.

$$
\frac{\left(1-\frac{2}{3}\right)}{3}
$$

(ii ) Consider the iteration, $Z_{1}=\frac{2}{3}, Z_{n+1}=\frac{1-Z_{n}}{3}$
Use the space below to work out the first six terms of this iterative sequence and put your answers in the table towards the bottom of the page.

| $Z_{1}$ | $Z_{2}$ | $Z_{3}$ | $Z_{4}$ | $Z_{5}$ | $Z_{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

[ 7 marks ]
( iii ) From looking at your table of results, and spotting a pattern, write down what the next three terms, $Z_{7}, Z_{8}$ and $Z_{9}$ are likely to be.

