Lesson 8

GCSE Mathematics Iteration

8.1 Homework (Revision)

Non-Calculator

Marks Available : 60

Question 1

A number sequence, U, is described by the following flowchart,

Complete this table to show the first six terms in sequence U

U_1	${U}_2$	U_3	${U}_4$	U_5	U_{6}
124					

[7 marks]

Question 2

Simplify,

(i)
$$4 \times \left(\frac{3}{4} + 1\right)$$
 (ii) $\left(5 + \frac{3}{7}\right) \times 7$

A number sequence, K, is described by the following flowchart,

The flowchart generates a loop of numbers.

On the following diagram write out the numbers that are in the loop.

[8 marks]

Question 4

First expand the brackets, then simplify,

(i) $\left(4 + \frac{1}{6}\right) \times 6$ [2 marks] (ii) $\frac{\left(3 + \frac{2}{7}\right)}{4} \times \frac{7}{7}$

[2 marks]

A sequence of numbers has the iterative rule

$$A_1 = \frac{1}{16} \qquad A_{n+1} = \frac{4}{3} A_n$$

Use the space below to work out the first six terms of this iterative sequence.

Simplify fractions where possible.

Put your answers in the table.

¹¹ ₁ ¹¹ ₂ ¹¹ ₃ ¹¹ ₄	A_5	A_6

[7 marks]

Question 6

Simplify,

(i)
$$\frac{\left(\frac{3}{8}+2\right)}{5} \times \frac{8}{8}$$

[2 marks]

(iii)
$$\frac{\left(4+\frac{2}{3}\right)}{5}$$

(ii) $\frac{\left(5+\frac{7}{4}\right)}{11}$

[2 marks]

The following sum has an answer that is a rational number. (i)

> That is, a number in the form $\frac{p}{q}$ for integer p and q with $q \neq 0$ Determine what that rational number is.

$$\frac{\left(1 - \frac{1}{2}\right)}{3}$$
 [2 marks]

Consider the iteration, $B_1 = \frac{1}{2}$, $B_{n+1} = \frac{1 - B_n}{3}$ (ii)

> Use the space below to work out the first six terms of this iterative sequence and put your answers in the table towards the bottom of the page.

B_1	B_2	<i>B</i> ₃	B_4	B_5	<i>B</i> ₆

[7 marks]

Question 8 Simplify,

(i)
$$\frac{1}{\left(\frac{5}{3}+4\right)} \times \frac{3}{3}$$

[2 marks]

$$(\mathbf{ii}) \quad \frac{5}{\left(\frac{7}{8}+2\right)}$$

[2 marks]

[2 marks]

(ii)
$$\frac{5}{\left(\frac{7}{8}+2\right)}$$

(iii) $\frac{9}{(\frac{7}{5}-1)}$

(i) The following sum has an answer that is a rational number.

That is, a number in the form $\frac{p}{q}$ for integer p and q with $q \neq 0$ Determine what that rational number is.

$$\frac{2}{\left(3+\frac{2}{3}\right)}$$

[2 marks]

(ii) Consider the iteration,
$$Z_1 = 0$$
, $Z_{n+1} = \frac{2}{3 + Z_n}$

Use the space below to work out the first six terms of this iterative sequence and put your answers in the table towards the bottom of the page.

Z_1	Z_2	Z_3	Z_4	Z_5	Z_6

^{[7} marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**" © 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk