Twenty-One Today #2

You have thirty-five minutes to answer 21 questions

Marks Available : 40

GCSE Mathematics Twenty-One Today

[1 mark]

Question 1

Consider the functions, $f(x) = \frac{x^2 + 1}{2}$ g(x) = 4x + 3Determine fg(2)

Question 2

A Quadrilateral is shown with one vertex at the centre of a circle.

(**i**) Write down the size of angle A

(**ii**) Calculate the size of angle *B*

[1 mark]

[1 mark]

Question 3

Solve the equation, 4(3x + 2) - 3(2x + 1) = 29

[2 marks]

(i) Solve the inequality;

 $-5 < 4x + 3 \le 13$

[2 marks]

(ii) If x is an integer, list the values of x that satisfy the part (i) inequality.

[1 mark]

Question 5

Write the number 0.00000315 in standard form.

[1 mark]

Question 6

Felix is interested in buying a drone, priced at £425. When the drone is reduced by 40% in a sale, Felix decides he can't afford not to buy. What is the reduced cost of the drone ?

[1 mark]

Question 7You are told the "product of primes" for two numbers; $2340 = 2 \times 2 \times 3 \times 3 \times 5 \times 13$ $6615 = 3 \times 3 \times 3 \times 5 \times 7 \times 7$

What is the Highest Common factor of 2340 and 6615?

[1 mark]

Make c the subject of the formula, $E = m c^2$

Question 9

[1 mark]

Use a compass and a straight edge to construct the perpendicular bisector to the line AB drawn given below.

Do NOT rub out any marks used in the construction.

A supermarket measures the time spent by 100 customers in their store.

Time	N° of Customers (frequency)	Cumulative Frequency
$0 < t \le 5$	8	
$5 < t \le 10$	11	
$10 < t \le 15$	23	
$15 < t \le 20$	42	
$20 < t \le 25$	9	
$25 < t \le 30$	5	
$30 < t \le 35$	2	

Complete the column headed Cumulative Frequency.

Question 11

Expand the brackets and simplify; (3x + 4) (2x - 3)

Question 12

Consider the following number which is written in standard form;

 8.13×10^{4}

Write this as an ordinary number.

Question 13

(i) What is the area of a circle of radius 6.4 cm ?Give your answer to three significant figures.

		[1 mark]
(ii)	A cylinder has a cross section that is a circle of radius 6.4 cm.	
	It is 25 cm in length.	
	What is the volume of the cylinder ?	
	Give your answer to three significant figures.	

[1 mark]

[1 mark]

[1 mark]

9 is a square number.

(i) List the three factors of 9.

[1 mark]

[4 marks]

Jack says that all square numbers have exactly three factors.

(ii) Give an example of a square number that proves Jack is wrong.

[1 mark]

Two ordinary six faced dice are rolled, one red and one blue. A *prime roll* is one in which both dice show a prime number. For example, if the red shows 5 and the blue shows 3 that is a *prime roll*. Using the grid below to help, determine the probability of a *prime roll*.

[3 marks]

Question 17

Calculate the size of angle *u* in the triangle below. Give your answer to one decimal place.

[2 marks]

Question 18

Expand the brackets and simplify, $(3x)^2 \times (2x)^3$

On the grid show, by shading, the region that satisfies all of these inequalities,

$$2y + 4 < x$$
 $x < 3$ $y < 6 - 3x$

Label the region **R**.

[3 marks]

Question 20

By first factorising solve the equation $x^2 + 3x - 28 = 0$

[2 marks]

21 Today !

Use the observation that, $1 + 3 = 2^2$, $1 + 3 + 5 = 3^2$, $1 + 3 + 5 + 7 = 4^2$ to calculate: $1 + 3 + 5 + 7 + 9 + 11 + 13 + \dots + 95 + 97 + 99$

[2 marks]

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**"

© 2023 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from mhh@shrewsbury.org.uk