Twenty-One Today \#2

You have thirty-five minutes to answer 21 questions

Marks Available : 40

GCSE Mathematics
Twenty-One Today

Question 1

Consider the functions, $f(x)=\frac{x^{2}+1}{2} \quad g(x)=4 x+3$
Determine $f g(2)$

Question 2

A Quadrilateral is shown with one vertex at the centre of a circle.
(i) Write down the size of angle A
(ii) Calculate the size of angle B

Question 3

Solve the equation, $4(3 x+2)-3(2 x+1)=29$

Question 4

(i) Solve the inequality;

$$
-5<4 x+3 \leqslant 13
$$

(ii) If x is an integer, list the values of x that satisfy the part (i) inequality.
[1 mark]

Question 5

Write the number 0.00000315 in standard form.

[1 mark]

Question 6

Felix is interested in buying a drone, priced at $£ 425$.
When the drone is reduced by 40% in a sale, Felix decides he can't afford not to buy. What is the reduced cost of the drone?
[1 mark]

Question 7

You are told the "product of primes" for two numbers;
$2340=2 \times 2 \times 3 \times 3 \times 5 \times 13 \quad 6615=3 \times 3 \times 3 \times 5 \times 7 \times 7$

What is the Highest Common factor of 2340 and 6615 ?

Question 8

Make c the subject of the formula, $E=m c^{2}$

[1 mark]

Question 9

Use a compass and a straight edge to construct the perpendicular bisector to the line $A B$ drawn given below.
Do NOT rub out any marks used in the construction.

Question 10

A supermarket measures the time spent by 100 customers in their store.

Time	N° of Customers (frequency)	Cumulative Frequency
$0<t \leqslant 5$	8	
$5<t \leqslant 10$	11	
$10<t \leqslant 15$	23	
$15<t \leqslant 20$	42	
$20<t \leqslant 25$	9	
$25<t \leqslant 30$	5	
$30<t \leqslant 35$	2	

Complete the column headed Cumulative Frequency.

Question 11

Expand the brackets and simplify; $(3 x+4)(2 x-3)$

Question 12

Consider the following number which is written in standard form;

$$
8.13 \times 10^{4}
$$

Write this as an ordinary number.

Question 13

(i) What is the area of a circle of radius 6.4 cm ?

Give your answer to three significant figures.
(ii) A cylinder has a cross section that is a circle of radius 6.4 cm .
It is 25 cm in length.
What is the volume of the cylinder ?
Give your answer to three significant figures.

Question 14

$O A B C$ is a trapezium.

$\overrightarrow{O A}=a$
$\overrightarrow{A B}=\boldsymbol{b}$
$\overrightarrow{O C}=3 b$
D is the point on $O B$ such that $O D: D B=2: 3$
E is the point on $B C$ such that $B E: E C=1: 4$
Work out the vector $\overrightarrow{D E}$ in terms of \boldsymbol{a} and \boldsymbol{b}
Give your answer in its simplest form.

Question 15

9 is a square number.
(i) List the three factors of 9 .

Jack says that all square numbers have exactly three factors.
(ii) Give an example of a square number that proves Jack is wrong.

Question 16

Two ordinary six faced dice are rolled, one red and one blue.
A prime roll is one in which both dice show a prime number.
For example, if the red shows 5 and the blue shows 3 that is a prime roll.
Using the grid below to help, determine the probability of a prime roll.
RED

	1	2	3	4	5	6
\mathbf{B}						
L						
$\mathbf{2}$						
3					P	
$\mathbf{4}$						
$\mathbf{5}$						
6						

Question 17

Calculate the size of angle u in the triangle below.
Give your answer to one decimal place.

Question 18

Expand the brackets and simplify, $(3 x)^{2} \times(2 x)^{3}$

Question 19

On the grid show, by shading, the region that satisfies all of these inequalities,

$$
2 y+4<x \quad x<3 \quad y<6-3 x
$$

Label the region \mathbf{R}.

Question 20

By first factorising solve the equation $x^{2}+3 x-28=0$

21 Today !

Use the observation that, $1+3=2^{2}, \quad 1+3+5=3^{2}, \quad 1+3+5+7=4^{2}$ to calculate: $1+3+5+7+9+11+13+\ldots+95+97+99$

