#### 3.1 Start Up

Use the table of Squares and Cubes from 1 to 99 to determine;

$$\left(\frac{21}{26}\right)^2 = \frac{441}{}$$

$$\left(\frac{49}{34}\right)^2 = \frac{1156}{1156}$$

$$\left(\frac{21}{26}\right)^2 = \frac{441}{1156} \qquad \left(\frac{49}{91}\right)^2 = \frac{1156}{1156} \qquad \left(\frac{32}{91}\right)^2 = \frac{1156}{1156}$$

$$\left(\frac{17}{31}\right)^3 = \frac{4913}{1}$$

$$\left(\frac{7}{29}\right)^3 = \frac{}{24389}$$

$$\left(\frac{17}{31}\right)^3 = \frac{4913}{24389} \qquad \left(\frac{7}{50}\right)^3 = \frac{1}{24389} \qquad \left(\frac{63}{50}\right)^3 = \frac{1}{24389}$$

$$\left(\frac{324}{625}\right)^{0.5} = \frac{18}{}$$

$$\left(\frac{196}{4356}\right)^{0.5} = \frac{1}{66}$$

$$\left(\frac{324}{625}\right)^{0.5} = \frac{18}{66} \qquad \left(\frac{196}{4356}\right)^{0.5} = \frac{66}{66} \qquad \left(\frac{6241}{9801}\right)^{0.5} = \frac{6241}{66}$$

$$\left(\frac{81}{25}\right)^{\frac{1}{2}} = -$$

$$\left(\frac{1}{100}\right)^{\frac{1}{2}} = -$$

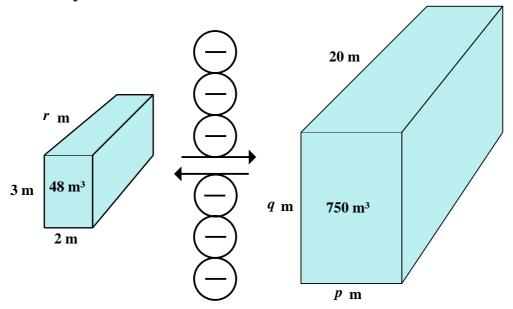
$$\left(\frac{81}{25}\right)^{\frac{1}{2}} = \frac{1}{100} = \frac{\left(\frac{2116}{2601}\right)^{\frac{1}{2}}}{100} = \frac{1}{100} =$$

$$\left(\frac{8}{27}\right)^{\frac{1}{3}} = -$$

$$\left(\frac{4096}{24389}\right)^{\frac{1}{3}} = -$$

$$\left(\frac{8}{27}\right)^{\frac{1}{3}} = \frac{4096}{24389} = \frac{857375}{884736} = \frac{1}{3}$$

# 3.2 Volume Scale Factor (vsf)


For any two similar solids:

$$volume\ scale\ factor\ =\ (\ length\ scale\ factor\ )^3$$

which can also be expressed as:

$$length\ scale\ factor\ =\ \sqrt[3]{volume\ scale\ factor}$$

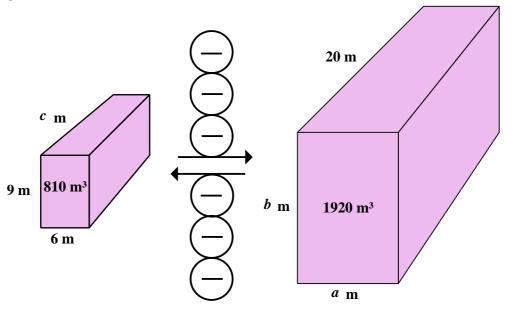
# 3.3 Example



The above two similar cuboids are shown with the same orientation.

(i) Find the lengths marked p, q and r.

[ 3 marks ]


(ii) How many times more surface area has the larger cuboid than the smaller?

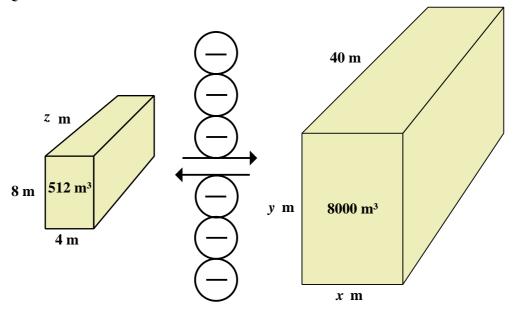
[ 1 mark ]

# 3.4 Exercise

Marks Available: 56

# **Question 1**




The above two similar cuboids are shown with the same orientation.

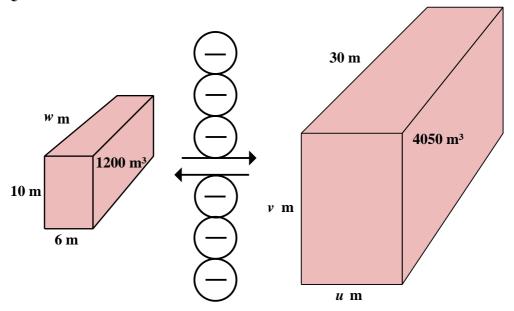
(i) Find the lengths marked a, b and c.

[ 3 marks ]

(ii) How many times more surface area has the larger cuboid than the smaller?

[2 marks]




The above two similar cuboids are shown with the same orientation.

(i) Find the lengths marked x, y and z.

[ 3 marks ]

(ii) How many times more surface area has the larger cuboid than the smaller?

[ 2 marks ]



The above two similar cuboids are shown with the same orientation.

(i) Find the lengths marked u, v and w.

[ 3 marks ]

(ii) How many times more surface area has the larger cuboid than the smaller?

[ 2 marks ]

(i) Are all squares similar? YES / NO In other words, Are all squares the same shape?

[ 1 mark ]

(ii) A smaller square has an area of 27cm<sup>3</sup>.

A larger square has a side  $\frac{5}{3}$  times greater than the small square.

What is the area of the larger square?

Hint: 
$$lsf = \frac{5}{3}$$
  $asf = (lsf)^2$   $A_{BIG} = A_{SMALL} \times asf$ 

[ 3 marks ]

#### **Question 5**

Cuboid G measures 14cm by 21cm by 28cm.

Cuboid *H* measures 4cm by 6cm by 8cm.

(i) Complete the following to show that the two cuboids similar.

$$\frac{14}{6} = \frac{1}{6} = \frac{1}{6}$$
 All cancel down to  $\frac{1}{6}$ 

[2 marks]

(ii) What is the *length scale factor*, greater than 1, of the similarity?

[ 1 mark ]

(iii) What is the *area scale factor* of, greater than 1, of the similarity?

$$asf = ----$$

[ 1 mark ]

(iv) What is the *volume scale factor*, greater than 1, of the similarity?

$$vsf = ----$$

[ 1 mark ]

- (v) Calculate;
  - (a)  $V_{BIG}$

[ 1 mark ]

 $(\mathbf{b})$   $V_{SMALL}$ 

[ 1 mark ]

(c)  $V_{SMALL} \times vsf$ 

[ 1 mark ]

(d) Comment

[ 1 mark ]

Are all rectangles similar?

YES / NO

In other words, Are all rectangles the same shape?

[ 1 mark ]

#### **Question 7**

(i) Are all spheres similar?

YES / NO

[1 mark]

(ii) A smaller sphere has a volume of 32cm<sup>3</sup>.

A larger sphere has a radius  $\frac{5}{2}$  times greater than the small sphere.

What is the volume of the larger sphere?

Hint: 
$$lsf = \frac{5}{2}$$
  $vsf = (lsf)^3$   $V_{BIG} = V_{SMALL} \times vsf$ 

[3 marks]

#### **Question 8**

A larger cuboid has lengths that are  $\frac{4}{3}$  times longer than a similar smaller cuboid.

The smaller cuboid measures 60cm by 66cm by 42cm.

What are the measurements of the larger cuboid?



[2 marks]

#### **Question 9**

A larger cuboid has lengths that are  $\frac{7}{4}$  times longer than a similar smaller cuboid.

The smaller cuboid measures 8 cm by 40 cm by 44 cm.

What are the measurements of the larger cuboid?



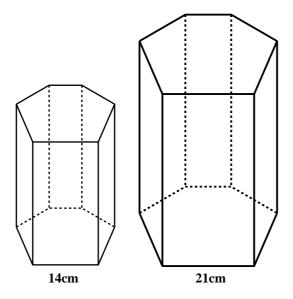
[2 marks]

#### **Question 10**

(i) Are all triangles similar? YES / NO

[ 1 mark ]

(ii) Are all right angled triangles similar? YES / NO


[ 1 mark ]

(iii) Are all equilateral triangles similar? YES / NO

[ 1 mark ]

Two similar hexagonal prisms are shown below.

An edge of 14cm on the smaller corresponds to an edge of length 21cm on the larger.



(i) What is the *length scale factor*, greater than 1, of the similarity?

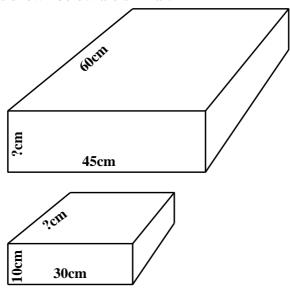
[ 1 mark ]

(ii) What is the *area scale factor*, greater than 1, of the similarity?

$$asf = ----$$

[ 1 mark ]

(iii) What is the *volume scale factor*, greater than 1, of the similarity?


$$vsf = ----$$

[ 1 mark ]

(iv) The volume of the smaller hexagonal prism is 40 cm<sup>3</sup>.

Calculate the volume of the larger hexagonal prism.

The two cuboids shown below are similar.

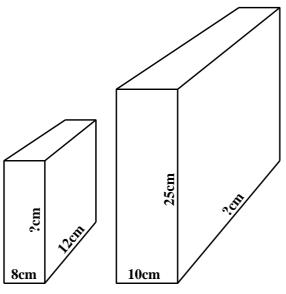


(i) What is the *length scale factor*, greater than 1, of the similarity?

[ 1 mark ]

(ii) Find the height of the upper cuboid, marked with a question mark.

[ 1 mark ]


(iii) Find the missing length on the lower cuboid, marked with a question mark.

[ 1 mark ]

# **Question 13**

Each face of a smaller cube has an area of 36 cm<sup>2</sup> A larger cube has edges that are 10 times longer. What is the volume of the larger cube ?

The two cuboids shown below are similar.



(i) What is the *length scale factor*, greater than 1, of the similarity?

[ 1 mark ]

(ii) Find the unknown length of the right cuboid, marked with a question mark.

[ 1 mark ]

(iii) Find the unknown height of the left cuboid, marked with a question mark.

[ 1 mark ]

#### **Question 15**

A 250 ml can of coke is similar to a 500 ml can of coke.

Explain why radius of the larger can is NOT double that of the smaller.

[3 marks]