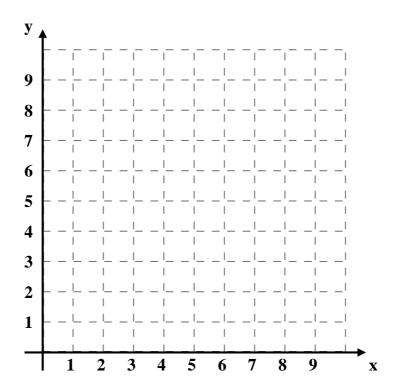

Coordinate Geometry

Featuring an Introduction to TRIGONOMETRY

1.1 Between two points


Example

On the grid below each square represents 1 km by 1 km. Buried treasure is at (3, 2).

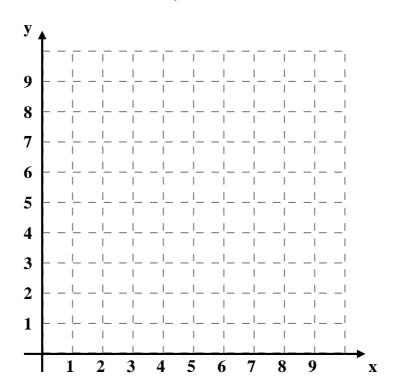
(i) Mark the location of the buried treasure with an X.

A man is at (8, 9).

(ii) Mark the location of the man with an M.

(iii) Find the distance between the treasure, X, and the man, M. Give your answer correct to two decimal places.

1.2 Exercise

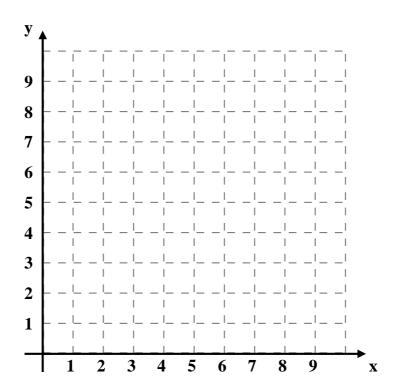

Question 1

On the grid below each square represents 1 metre by 1 metre. A cow pat is at (2, 3).

(\mathbf{i}) Mark the location of the cow pat with a P.

A fly is at (9, 6).

(ii) Mark the location of the fly with an F.


(iii) Find the distance between the cow pat, P, and the fly, F. Give your answer correct to two decimal places.

On the grid below each square represents 1 km by 1 km. A water hole is at (2, 9).

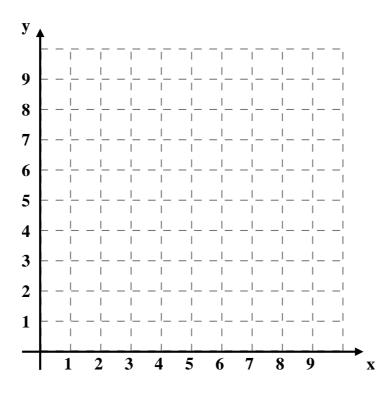
(\mathbf{i}) Mark the location of the water hole with a W.

A snake is at (7,3).

(ii) Mark the location of the snake with an S.

(iii) Find the distance between the water hole, W, and the snake, S. Give your answer correct to two decimal places.

On the grid below each square represents 1 metre by 1 metre. A bee is at (1, 5).


(i) Mark the location of the bee with a *B*.

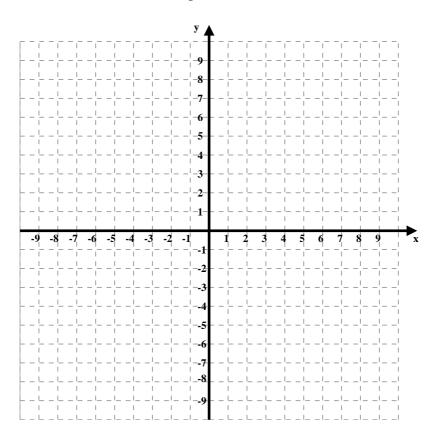
A daisy is at (7, 8).

(ii) Mark the location of the daisy with a D.

A pansy is at (8, 3).

(iii) Mark the location of the pansy with a P.

(iii) Find, to two decimal places, the distance between the bee, B, and the daisy, D.

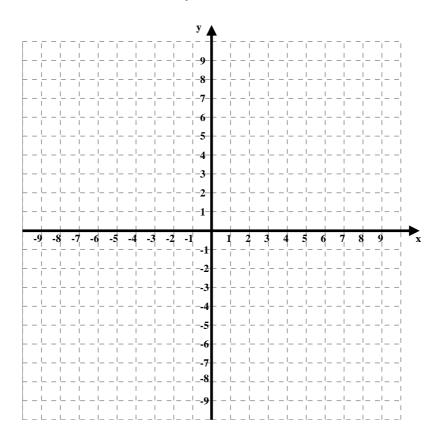

(iv) Find, to two decimal places, the distance between the bee, B, and the pansy, P.

On the grid below each square represents 1 mm by 1 mm. An ant is at the point (-6, -2).

(\mathbf{i}) Mark the location of the ant with an A.

A spider is at (5,7).

(ii) Mark the location of the spider with an *S*.


(iii) Find the distance between the ant, A, and the spider, S. Give your answer correct to two decimal places.

On the grid below each square represents 1 km by 1 km. An lighthouse is at the point (-7, 8).

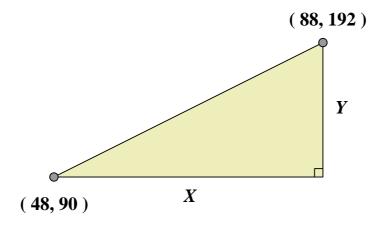
(\mathbf{i}) Mark the location of the lighthouse with an L.

A yacht is at (5, -9).

(ii) Mark the location of the yacht with a Y.

(iii) Find the distance between the lighthouse, *L*, and the yacht, *Y*. Give your answer correct to two decimal places.

Suppose we have two points.


Let's call one point A and the other point B.

The coordinates of A are (48, 90).

The coordinates of B are (88, 192).

The units of the coordinates are cm.

Rather than plot the points, sketch a (not to scale) right-angled triangle;

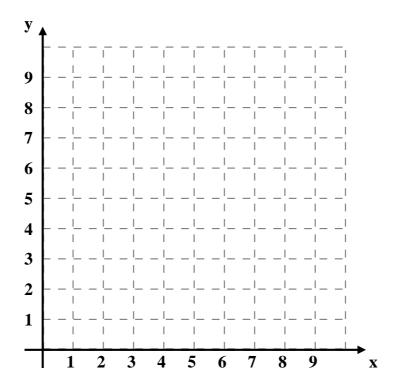
- (i) What is the length marked X?
- (ii) What is the length marked Y?
- (iii) Use the theorem of Pythagoras to work out the distance between the points (48, 90) and (88, 192).

Use the 'sketch a (not to scale) right-angled triangle' technique to find the distance between (12, 37) and (52, 100).

HINT: Draw a not-to-scale right-angled triangle in the space below. Then mark of the lengths of the two sides that touch the right angle. Then use the Theorem of Pythagoras.

Find the distance between the points (-4, -7) and (34, 66).

Point A is (X_A, Y_A) .


Point B is (X_B, Y_B).

(i) Work out a formula for the distance between the points A and B.

(ii) Show me that your formula works by putting the points (3, 2) and (8, 9) into it, which are the coordinates from the introductory example. (So you know what the answer should be)

On the grid below;

- (i) Shade the square with vertices (0,7), (3,10), (6,7) and (3,4).
- (ii) Shade the square with vertices (6,4), (6,7), (9,7) and (9,4).
- (iii) Shade the square with vertices (6, 1), (3, 1), (3, 4) and (6, 4).

(iv) What does the theorem of Pythagoras tell you about the areas of the squares you shaded in parts (i), (ii) and (iii)?