
5.1 tan

Calculator needed!

$$tan A^{\circ} = \frac{opp}{adj}$$
 which gives $A^{\circ} = arctan\left(\frac{opp}{adj}\right)$

$$opp = adj \times tan A^{\circ}$$

$$adj = \frac{opp}{tan A^{\circ}}$$

Labelling

First *hyp* Look for the *right-angle*.

The *hypotenuse* does not touch the *right-angle*.

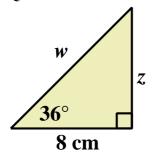
Second *opp* Look for the *angle-of-focus*.

The *opposite* does not touch the *angle-of-focus*.

Third adj The adjacent touches both the right-angle

and the angle-of-focus.

Theorem of Pythagoras


$$hyp^{2} = opp^{2} + adj^{2}$$

$$opp^{2} = hyp^{2} - adj^{2}$$

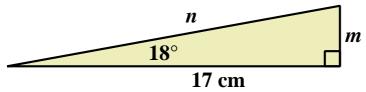
$$adj^{2} = hyp^{2} - opp^{2}$$

5.2 Exercise

Question 1

- (i) Label the triangle sides hyp, opp, and adj.
- (ii) Calculate z using the formula,

$$opp = adj \times tan A^{\circ}$$


$$z = 8 \times tan 36^{\circ}$$

$$z =$$

(iii) Calculate w using the formula,

$$hyp^2 = opp^2 + adj^2$$

Question 2

- (i) Label the triangle sides hyp, opp, and adj.
- (ii) Calculate m using the formula,

$$opp = adj \times tan A^{\circ}$$

$$m = \underline{\qquad} \times tan 18^{\circ}$$

$$m = \underline{\qquad}$$

(iii) Calculate n using the formula,

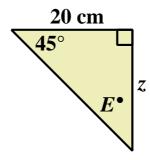
$$hyp^2 = opp^2 + adj^2$$

Question 3

w

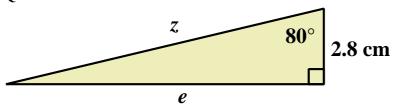
28°

7.5 m


- (i) Label the triangle sides hyp, opp, and adj.
- (ii) Calculate v using the formula,

$$opp = adj \times tan A^{\circ}$$

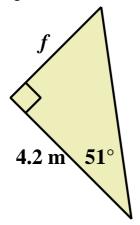
(iii) Calculate w using the formula,


$$hyp^2 = opp^2 + adj^2$$

Question 4

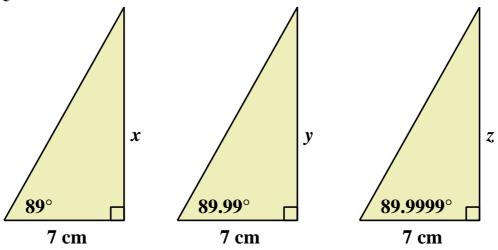
Do **NOT** label the sides in this triangle!

- (i) Use the fact that the angles in a triangle sum to 180° to work out angle E.
- (ii) It's now obvious what length z is!Write down the length of z and explain why it was obvious.


- (i) Label the triangle sides hyp, opp, and adj.
- (ii) Calculate e using the formula,

$$opp = adj \times tan A^{\circ}$$

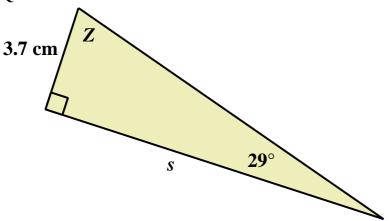
(iii) Calculate z using the formula,


$$hyp^2 = opp^2 + adj^2$$

Question 6

Calculate the length of f.

Question 7

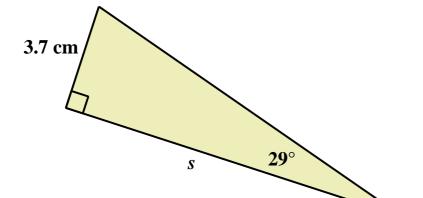


(i) Calculate x.

(ii) Calculate y.

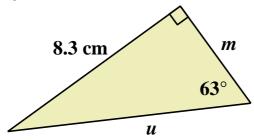
(iii) Calculate z.

Can you explain what goes wrong if the angle is 89.999 999 999 999 ?


- (i) Calculate Z using fact that the angles in a triangle add up to 180°
- (ii) Cross out the 29° angle, and focus on angle Z.
- (iii) Label the triangle sides hyp

opp : i.e opposite to Z

and adj: i.e. adjacent to Z

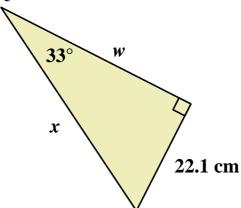

(iv) Calculate s using the formula,

$$opp = adj \times tan Z^{\circ}$$

- (v) Label the triangle sides *hyp*, *opp*, and *adj*.
- (vi) Calculate s using the formula,

$$adj = \frac{opp}{tan \ 29^{\circ}}$$

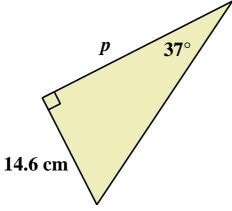
- (i) Label the triangle sides hyp, opp, and adj.
- (ii) Calculate m using the formula,


$$adj = \frac{opp}{tan A^{\circ}}$$
$$m = \frac{8.3}{tan 63}$$

$$m =$$

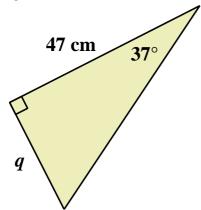
(iii) Calculate *u* by using Pythagoras' theorem,

$$hyp^2 = opp^2 + adj^2$$

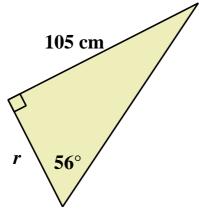

Question 10

- (i) Label the triangle sides hyp, opp, and adj.
- (ii) Calculate w using the formula,

$$adj = \frac{opp}{tan A^{\circ}}$$

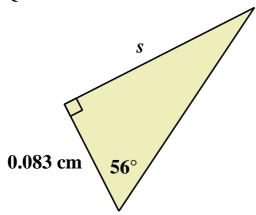

(iii) Calculate x by using Pythagoras' theorem.

- (i) Label the triangle sides hyp, opp, and adj.
- (ii) Calculate p using the correct formula,

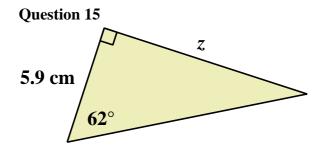

EITHER
$$opp = adj \times tan A^{\circ}$$
 $OR \quad adj = \frac{opp}{tan A^{\circ}}$

Question 12

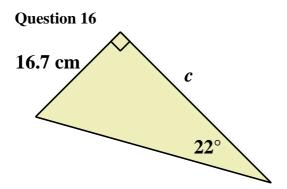
- (i) Label the triangle sides hyp, opp, and adj.
- (ii) Calculate q using the correct formula,


EITHER
$$opp = adj \times tan A^{\circ}$$
 $OR \quad adj = \frac{opp}{tan A^{\circ}}$

- (i) Label the triangle sides hyp, opp, and adj.
- (ii) Calculate r using the correct formula,


EITHER
$$opp = adj \times tan A^{\circ}$$
 $OR \quad adj = \frac{opp}{tan A^{\circ}}$

Question 14



- (i) Label the triangle sides hyp, opp, and adj.
- (ii) Calculate s using the correct formula,

EITHER
$$opp = adj \times tan A^{\circ}$$
 $OR \quad adj = \frac{opp}{tan A^{\circ}}$

Calculate z.

Calculate c.

Giving answers to three significant figures, calculate;

(i)
$$5 + 4 \times \tan 82^{\circ}$$

(ii)
$$7 + \tan 45^{\circ} \times 2$$

HINT: You will get a math error you forget to close your brackets. You should have entered $7 + tan(45) \times 2$

(iii)
$$2.7 + \tan 30^{\circ} \times 3$$

(iv)
$$7.6 \times \tan 22^{\circ} + 68$$

HINT: If will get a math error you forget to close your brackets. You should have entered $7 \times tan(22) + 68$

$$(v)$$
 1.7 × tan 53° + 37

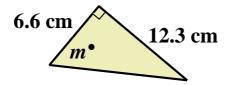
$$(\mathbf{vi})$$

$$\frac{66}{4 + \tan 13^{\circ}}$$

(vii)
$$\frac{28}{\tan 20^{\circ} - 20}$$

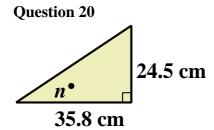
(viii)
$$\sqrt{\tan 45^{\circ} \times 5}$$

Question 18
3.7 cm
3.7 cm
3.7 cm
0.01°

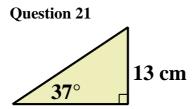

0.01°

(i) Calculate u.

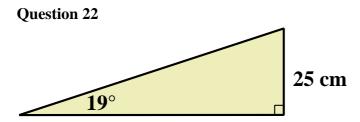
(ii) Calculate v.


(iii) Calculate w.

Can you explain what goes wrong if the angle is 0° ?

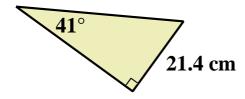


Label the triangle's sides, *hyp*, *opp* and *adj*. Calculate angle *m* by using the formula;


$$m = \arctan\left(\frac{opp}{adj}\right)$$

Calculate angle n.

Find the perimeter of the triangle.

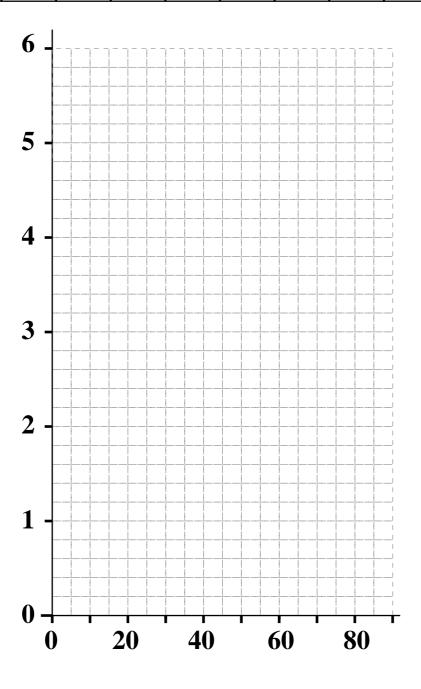


Find the perimeter of the triangle.

Question 23 53° 32 cm

Find the perimeter of the triangle.

Question 24



Find the perimeter of the triangle.

Question 25This question is about plotting a graph of the *tan* function.

A°	0°	5°	10°	15°	20°	25°	30°	35°	40°
tan A°									

A°	45°	50°	55°	60°	65°	70°	75°	80°	85°
tan A°									

These lesson notes are available from www.NumberWonder.co.uk They may be freely duplicated and distributed but copyright remains with the author. $$\odot$$ 2019 Number Wonder