Non-Calculator

3.1 Harder Sequence Code

Consider this number sequence;

$$A_n = (2n + 1) (3n - 2)$$

To find the first four terms we can set out our working as follows;

When:
$$n = 1$$
: $A_1 = 3 \times 1 =$

$$n = 2$$
: $A_2 = 5 \times 4 =$

$$n = 3$$
: $A_3 = \times =$

$$n = 4$$
: $A_4 = \times =$

As a table....

Position, n	1 st	2 nd	3 rd	4 th
Term, $A_n = (2 n + 1) (3 n - 2)$				

NOTICE: The 'jump' from one term to the next is changing each time.

3.2 Exercise

Question 1

Find the first four terms of the sequence;

$$B_n = (2n-1)(5n-4)$$

Working:

When:
$$n = 1$$
: $B_1 = 1 \times 1 = 1$

$$n = 2$$
: $B_2 = 3 \times 6 = 1$

$$n = 3$$
: $B_3 = 1 \times 1 = 1$

$$n = 3$$
: $B_4 = 1 \times 1 = 1$

$$n = 4$$
: $B_4 = 1 \times 1 = 1$

Write your answers in this table....

Position, n	1 st	2 nd	3 rd	4 th
Term, $B_n = (2 n - 1) (5 n - 4)$				

Find the first four terms of the sequence;

$$C_n = (4n - 1)(n + 2)$$

Working:

When:
$$n = 1$$
: $C_1 = \times$

$$n=2: C_2 = \times =$$

$$n = 3$$
: $C_3 = \times =$

$$n=4$$
: $C_4 = \times =$

Write your answers in this table....

Position, n	1 st	2 nd	3 rd	4 th
Term, $C_n = (4 n - 1) (n + 2)$				

Question 3

Find the first six terms of the sequence,

$$D_n = 7 - 2n$$

Position, <i>n</i>	1 st	2 nd	3 rd	4 th	5 th	6 th
Term, $D_n = 7 - 2 n$						

Question 4

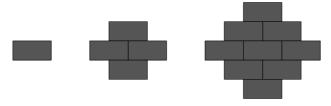
Find the first four terms of the sequence;

$$E_n = (8 - n) (3n + 2)$$

Working:

When:
$$n = 1$$
: $E_1 = \times =$

$$n=2$$
: $E_2 = \times =$


$$n = 3$$
: $E_3 = \times =$

$$n = 4$$
: $E_4 = \times =$

Write your answers in this table....

Position, n	1 st	2 nd	3 rd	4 th
Term, $E_n = (8 - n) (3 n + 2)$				

Study this sequence of pictures;

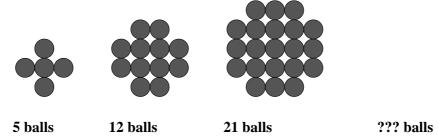
1 brick 4 bricks 9 bricks ??? bricks

- (a) Draw the fourth diagram.
- (**b**) How many bricks were needed to make the fourth diagram?
- (c) This number sequence is world famous. What is its world famous name?

Question 6

Find the first four terms of the sequence;

$$F_n = \frac{60}{(n+1)}$$

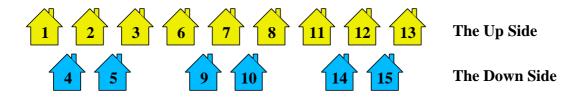

Working:

When
$$n = 1$$
 : $F_1 = \frac{60}{}$ = $n = 2$: $F_2 = \frac{60}{}$ = $n = 3$: $F_3 = \frac{}{}$ = $n = 4$: $n = 4$: $n = 4$: $n = 4$: $n = 4$

Write your answers in this table....

Position, n	1 st	2 nd	3 rd	4 th
Term, $F_n = \frac{60}{(n+1)}$				

Study this sequence of pictures;



- (a) Draw the fourth diagram.
- (**b**) How many balls were needed to make the fourth diagram?
- (c) Which ONE of the following formula is the correct formula for this sequence of pictures?

$$X_n = 4 + n$$
 $Y_n = n(n + 4)$ $Z_n = \frac{5}{n}$

Question 8

The diagram shows how the houses are numbered along a part of Stanley Road.

- (a) Will house 22 be on Up or Down Side?
- (**b**) Will house 39 be on Up or Down Side?
- (c) If the house number divides by five exactly, which side?
- (**d**) If the house number has a remainder of 1 when divided by 5, which side?
- (e) A sequence is described by the following algebra;

$$G_n = 5n - 2$$

Write down the first six terms;

Position, n	1 st	2 nd	3 rd	4 th	5 th	6 th
Term, $G_n = 5 n - 2$						

(\mathbf{f}) Are the houses that have numbers in sequence G on Up or Down Side?

Find the first four terms of the sequence;

$$G_n = \frac{20(2n-1)}{(n+1)}$$

Working:

When
$$n = 1$$
 : $G_1 = \frac{20 \times }{} =$ = $n = 2$: $G_2 = \frac{20 \times }{} =$ = $n = 3$: $G_3 = \frac{}{} =$ = $n = 4$: $G_4 = \frac{}{} =$ =

Write your answers in this table....

Position, <i>n</i>	1 st	2 nd	3 rd	4 th
Term, $G_n = \frac{20(2n-1)}{(n+1)}$				

Kevin predicts that G_5 will equal 29.

Show that Kevin is wrong.

Question 10

On a computer three small circles are drawn.

Using *copy and paste* the number of dots grows as shown;

The sequence is described by the formula;

$$H_n = 1.5 \times 2^n$$

Write out the first six terms of this number sequence in the following table;

Position, <i>n</i>	1 st	2 nd	3 rd	4 th	5 th	6 th
Term, $H_n = 1.5 \times 2^n$						

Here is a *position-to-term* formula that describes a world famous sequence of numbers.

$$A_n = 2n - 1$$

(a) Write out the start of this number sequence in the following table;

Position	1 st	2 nd	3 rd	4 th	5 th	6 th
Term						

- (**b**) What is A_{100} ?
- (c) What is this sequence's world famous name?

Question 12

Here is a *position-to-term* formula that describes a world famous sequence of numbers.

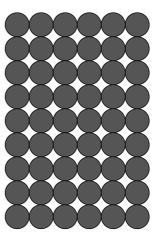
$$T_n = \frac{n(n+1)}{2}$$

(a) Write out the start of this number sequence in the following table;

Position	1 st	2 nd	3 rd	4 th	5 th	6 th
Term						

- (**b**) What is T_{200} ?
- (c) What is this sequence's world famous name?
- (d) Explain why this sequence is so called.

For each sequence use the *position-to-term* formula to generate the first four terms of the sequence.


Name	1 st term	2 nd term	3 rd term	4 th term	Position-to-term formula
В					$B_{\rm n} = 8 n - 5$
D					$D_{\rm n} = n^2 + 1$
E					$E_n = (n+1)(n+3)$
Н					$H_{\rm n} = 100 - 3 n$
K					$K_{\rm n}=~0.1~n+8$
M					$M_{\rm n}=5~n^2$
N					$N_{\rm n}=(5n)^2$
P					$P_{\rm n} = \frac{12}{n}$
Q					$Q_{n} = \frac{24}{n} + 3$
W					$W_n = 4 + 2^n$
X					$X_{n} = 2 \times 3^{(n-1)}$
Y					$Y_{\rm n} = n^{0}$

On a computer two small circles are drawn. Using *copy*, *paste* and *paste* again, the number of dots grows as shown;

The sequence is described by the formula;

$$P_n = \frac{2}{3} \times 3^n$$

(a) Write out the start of this number sequence in the following table;

Position	1 st	2 nd	3 rd	4 th	5 th	6 th
Term						

- (**b**) How would you find P_{10}
 - (i) Without a calculator?
 - (ii) With a calculator?