7.1 Summary

In this presentation of *number sequences* two methods of describing a sequence where studied:

- D1 Position-to-term
- D2 Term-to-term

Along the way some famous sequences where encountered:

- F1 The EVEN numbers
- F2 The ODD numbers
- F3 The FIBONACCI numbers
- **F4** The SQUARE numbers
- F5 The TRIANGULAR numbers

And, in particular, **ARITHMETIC PROGRESSIONS**, were featured.

7.1.1 D1 Position-to-term.

If asked to find the tenth term in the sequence $A_n = n^3 + n$ use the information about its position, the fact it's the 10^{th} term, to calculate the term in that position.

Such formulae are often called *the formula for the n* th *term*.

7.1.2 D2 Term-to-term.

If asked to find the fourth term in the sequence $A_1 = 1$, $A_{n+1} = 3 A_n + 1$, use the first term to get the second, then the second to get the third, and then the third to get the fourth.

This is also referred to as the *iterative* description of a sequence.

7.1.3 F1 The EVEN numbers.

2, 4, 6, 8, 10, ... **Arithmetic Progression** a = 2, d = 2.

Position-to-term: $E_n = 2 n$

Term-to-term: $E_1 = 2$, $E_{n+1} = E_n + 2$

7.1.4 F2 The ODD numbers.

1, 3, 5, 7, 9, ... **Arithmetic Progression** a = 1, d = 2.

Position-to-term: $O_n = 2n - 1$

Term-to-term: $O_1 = 1$, $O_{n+1} = O_n + 2$

7.1.5 F5 The FIBONACCI numbers.

1, 1, 2, 3, 5, 8, 13, 21,

Position-to-term: $F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$

Term-to-term: $F_{n+1} = F_n + F_{n-1}$

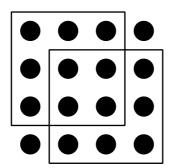
7.1.6 F3 The SQUARE numbers.

1, 4, 9, 16, 25, 36, ...

Position-to-term: $S_n = n^2$

Term-to-term: $S_{n+1} = (\sqrt{S_n} + 1)^2$

 $S_{n+1} = 2 S_n - S_{n-1} + 2$



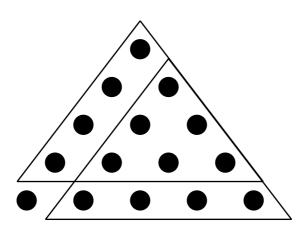
7.1.7 F4 The TRIANGULAR numbers.

1, 3, 6, 10, 15, 21, 28, 36, ...

Position-to-term: $T_n = \frac{1}{2} n (n+1)$

Term-to-term: $T_{n+1} = T_n + \frac{1}{2} \sqrt{8T_n + 1} + \frac{1}{2}$

 $T_{n+1} = 2 T_n - T_{n-1} + 1$



7.1.8 Arithmetic Progressions.

In algebra, ALL arithmetic progressions are of the form;

a, a+d, a+2d, a+3d, ..., a+(n-1)d

where *a* is the initial term and *d* is the common difference.

The position-to-term formula the $n^{\,\mathrm{th}}$ term of an Arithmetic Progression is :

$$A_n = dn + (a - d)$$

The iterative, term-to-term formula, for an Arithmetic progression is:

$$A_1 = a, \qquad A_{n+1} = A_n + d$$

7.2 Exercise

Question 1

Fill in the blank cells with the first four terms of each sequence.

Name	1st term	2 nd term	3 rd term	4 th term	Position-to-term or term-to-term formula	
A					$A_{\rm n} = 4 n + 6$	
В					$B_{\rm n} = 13 - 5 n$	
C					$C_n = (n+2) (n+1)$	
D					$D_1 = 2$, $D_{n+1} = D_n + 12$	
E					$E_1 = 2$, $E_{n+1} = 3 E_n - 1$	
F					$F_1 = 1, F_{n+1} = (\sqrt{F_n} + 1)^2$	
G					$G_{\rm n} = n^2 + 3.5$	
Н					$H_{\rm n} = \frac{24}{n} - n$	
I					$I_1 = 8$, $I_{n+1} = \frac{1}{2} I_n - 1$	
J					$J_1 = 24$, $J_{n+1} = \frac{48}{J_n} + 4$	

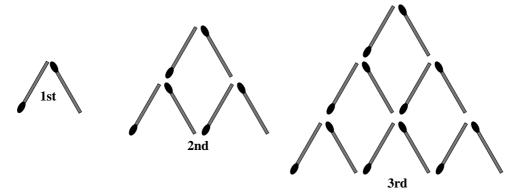
Question 2

Consider the following arithmetic progression;

7, 11, 15, 19, ...

- (a) Write down the next three terms.
- (**b**) Write down the formula for the n^{th} term.
- ($\bf c$) Use your formula to determine the 400 $^{\rm th}$ term in the sequence.
- (**d**) Could 26788 be a number in this sequence? Explain your answer.

Question 3



- (a) How many matches will be in the 4th, 5th and 6th diagrams?
- (b) There is a connection with triangular numbers.
 Look at section 5.1.6 on triangular numbers for a helpful formula.
 Hence write down the *position-to-term* formula for this matchstick sequence.
- (c) Use your formula to work out how many matches are needed to make the 100 $^{\rm th}$ matchstick diagram.

Question 4

Complete the following table where each sequence is in Arithmetic Progression.

Name	1st term	2 nd term	3 rd term	4 th term	Initial	Common	Position-to-term
					term	difference	formula
					а	d	$A_n = d n + (a - d)$
A	9	15	21	27			$A_{\rm n} =$
В	- 3	1					$B_{\rm n} =$
C			17	21			$C_{\rm n} =$
D					8	3	$D_{\rm n}$ =
E	29		15				$E_{\rm n} =$
F							$F_{\rm n}=7\ n+15$
G		23				6	$G_n =$
Н			28		8		$H_{\rm n} =$
I					·		$I_{\rm n} = 23 - 7 n$
J		11			·	9	$J_{\rm n}$ =

Question 5

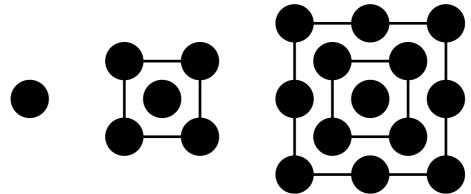
A sequence has the following position-to-term formula;

$$M_n = 2^n + 1$$

- (a) Write out the first ten terms of this sequence.
- (**b**) Could 34581 be in this sequence? Explain your answer.

Question 6

Study the sequence of patterns below;



The sequence can be described iteratively;

$$H_1 = 1$$
, $H_2 = 5$, $H_{n+1} = 2 H_n - H_{n-1} + 4$,

- (a) Show how you would use the information that $H_1 = 1$ and $H_2 = 5$ and the iterative relationship to calculate the value of H_3 .
- (**b**) Show how you would use the iterative description to calculate H_4 .
- (c) Write out the sequence starting with H_1 and up to H_{10} .

Question 7

A sequence is described iteratively as follows;

$$J_1 = 2, J_2 = 16, J_{n+1} = \frac{J_n}{J_{n-1}}$$

- (a) Write out the first ten terms of this sequence.
- (**b**) What is J_{36} ?