8.1 TEST

You do not need a calculator to do this test but may use one if you wish.

Question 1

Fill in the blank cells with the first four terms of each sequence.

Name	1st term	2 nd term	3 rd term	4 th term	Position-to-term or term-to-term formula
A					$A_{n} = 8n + 3$
В					$B_{\rm n} = 9 - 4 n$
C					$C_n = (n+3) (n-1)$
D					$D_1 = 5$, $D_{n+1} = D_n + 3$
E					$E_1 = 2$, $E_{n+1} = (E_n)^2$
F					$F_1 = 0$, $F_{n+1} = \frac{1}{2} F_n + 8$
G					$G_{\rm n} = n^2 - 0.5$
Н					$H_{\rm n} = \frac{12}{n} + n$
I					$I_1 = 1$, $I_{n+1} = 5 - 3 I_n$
J					$J_1 = -2, \ J_{n+1} = 3 J_n + 5$

[20 marks]

Question 2

Consider the following sequence, A, which is in arithmetic progression; 9, 14, 19, ...

(a) Write down the next four terms.

[2 marks]

(**b**) Write down the formula for A_n the nth term.

[3 marks]

(c) Use your formula to determine the 400 th term in the sequence.

[2 marks]

(**d**) Is 26789 a number in this sequence? Explain your answer.

[3 marks]

(a) How many matches will be in the 4th, 5th 6th and 7th diagrams?

[4 marks]

(**b**) There is a connection with triangular numbers, $T_n = \frac{1}{2} n (n + 1)$ Hence write down the *position-to-term* formula for this matchstick sequence.

[4 marks]

($\bf c$) Use your formula to work out how many matches are needed to make the 100 $^{\rm th}$ matchstick diagram.

[2 marks]

Question 4Complete the following table in which each sequence is in Arithmetic Progression.

Name	1st term	2 nd term	3 rd term	4 th term	Initial	Common	Position-to-term	
					term	difference	formula	
					а	d	$A_n = d n + (a - d)$	
A	10	16	22	28			$A_{\rm n} =$	
В	- 5	1					$B_{\rm n} =$	
C			29	38			$C_{\rm n} =$	
D					9	4	$D_{\rm n}$ =	
E	39		21				$E_{\rm n} =$	
F							$F_{\rm n} = 8 n + 11$	
G		23				- 4	$G_{\rm n}$ =	
Н			2.8		0.8		$H_{\rm n} =$	
I							$I_{\rm n} = 17 - 9 n$	
J		11		29			$J_{\rm n}$ =	

[20 marks]

The first five terms of the Fibonacci sequence are;

$$F_1 = 1$$
.

$$F_2 = 1$$
,

$$F_3 = 2$$

$$F_1 = 1$$
, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$

$$F_5=5$$

Write out the next five terms. (a)

$$F_6 =$$

$$F_7 =$$
.

$$F_8 =$$

$$F_6 =$$
 , $F_7 =$, $F_8 =$, $F_9 =$, $F_{10} =$

$$F_{10} =$$

[3 marks]

(b) Work out each of the following;

$$(i) F_1 \times F_3 - 1 =$$

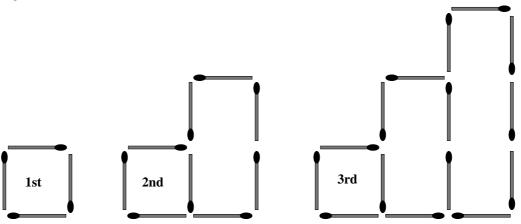
(ii)
$$F_2 \times F_4 + 1 =$$

(iii)
$$F_3 \times F_5 - 1 =$$

$$(iv)$$
 $F_4 \times F_6 + 1 =$

$$(\mathbf{v}) \qquad F_5 \times F_7 - 1 =$$

$$(vi)$$
 $F_6 \times F_8 + 1 =$


(vii)
$$F_7 \times F_9 - 1 =$$

(viii)
$$F_8 \times F_{10} + 1 =$$

[3 marks]

Comment on your part (**b**) pattern. (c)

[4 marks]

This matchstick sequence can be described iteratively;

$$K_1 = 4$$
, $K_2 = 9$, $K_{n+1} = 2 K_n - K_{n-1} + 1$,

(a) Show how you would use the information that $K_1 = 4$ and $K_2 = 9$ and the iterative relationship to calculate the value of K_3 .

[3 marks]

(**b**) Show how you would use the iterative description to calculate K_4 .

[3 marks]

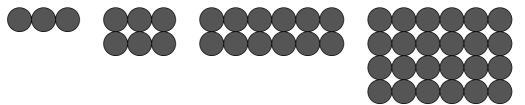
(c) Write out the sequence starting with K_1 and up to K_{10} .

A sequence is described iteratively as follows;

$$J_1 = 3, J_2 = 15, J_{n+1} = \frac{J_n}{J_{n-1}}$$

(a) Write out the first ten terms of this sequence.

[4 marks]


(**b**) If $J_1 = n$, $J_2 = m$, write out the first ten terms of the sequence. What have you proved?

[6 marks]

Question 8

On a computer three small circles are drawn.

Using *copy and paste* the number of dots grows as shown;

The sequence is described by the formula;

$$D_n = 1.5 \times 2^n$$

(a) Write out the start of this number sequence in the following table;

Position	1 st	2 nd	3 rd	4 th	5 th	6 th
Term						

[4 marks]

- (**b**) How would you find D_{10}
 - (i) Without a calculator?

[3 marks]

(ii) With a calculator?

[3 marks]