3.1 Factorising Quadratics

In general, a quadratic equation is an equation of the form $y = ax^2 + bx + c$.

When given a specific quadratic to work on the letters a, b and c will be replaced with numbers. You might, for example be asked to *factorise* the quadratic equation,

$$y = x^2 + 11x + 24$$

In this example a = 1, b = 11 and c = 24.

The 1, 11 and 24 are constants in this example. They are consistent, meaning they don't change. The x and the y are variables; they are free to vary which means that changing one, changes the other.

The word *factorise* in this context means to *make brackets*.

To keep things simple (to begin with) we will work on questions where a=1. When asked to factorise such a quadratic the task is to find an equivalent expression of the form y=(x+A)(x+B) where A and B are two real numbers (called the *negative roots* of the quadratic) that are to be found.

3.2 The Theory

We want to rewrite
$$y = x^2 + bx + c$$

in the form $y = (x + A)(x + B)$

In the space below, expand the brackets, gather together like terms and write two conclusions in which you relate A and B to b and c.

3.3 Three Examples

Example #1

Factorise
$$y = x^2 + 11x + 24$$

Example #2

Factorise
$$y = x^2 + 3x - 10$$

Example #3

Factorise
$$y = 3x^2 - 15x + 18$$

PLAN
(P+L)(A+N)
PA+PN+LA+LN
Your plan has
been foiled!

3.4 Exercise

Question 1

Factorise;

(i)
$$y = x^2 + 10x + 21$$

(i)
$$y = x^2 + 10x + 21$$
 (ii) $y = x^2 + 11x + 30$

(iii)
$$y = x^2 + 9x + 14$$

(iii)
$$y = x^2 + 9x + 14$$
 (iv) $y = x^2 + 8x + 15$

(v)
$$y = x^2 + 14x + 33$$
 (vi) $y = x^2 + 6x + 9$

(vi)
$$y = x^2 + 6x + 9$$

(vii)
$$y = x^2 + 10x + 9$$

(vii)
$$y = x^2 + 10x + 9$$
 (viii) $y = x^2 + 14x + 13$

(ix)
$$y = 10x^2 + 140x + 480$$
 (x) $y = 2x^2 + 36x + 154$

$$(\mathbf{x})$$
 $y = 2x^2 + 36x + 154$

Question 2

Factorise;

(i)
$$y = x^2 + 2x - 3$$

(i)
$$y = x^2 + 2x - 3$$
 (ii) $y = x^2 + 5x - 14$

(iii)
$$y = x^2 + 9x - 22$$
 (iv) $y = x^2 + 2x - 15$

(iv)
$$y = x^2 + 2x - 15$$

(v)
$$y = x^2 - 2x - 15$$
 (vi) $y = x^2 - 4x - 21$

(vi)
$$y = x^2 - 4x - 21$$

(vii)
$$y = x^2 - 8x - 20$$
 (viii) $y = x^2 - 8x - 33$

(viii)
$$y = x^2 - 8x - 33$$

$$(ix)$$
 $y = 3x^2 - 9x - 120$

(ix)
$$y = 3x^2 - 9x - 120$$
 (x) $y = 5x^2 - 30x - 200$

Question 3

Factorise;

(i)
$$y = x^2 - 5x + 6$$

(i)
$$y = x^2 - 5x + 6$$
 (ii) $y = x^2 - 8x + 15$

(iii)
$$y = x^2 - 10x + 21$$

(iii)
$$y = x^2 - 10x + 21$$
 (iv) $y = x^2 - 9x + 20$

(v)
$$y = x^2 - 10x + 25$$
 (vi) $y = x^2 - 7x + 6$

(**vi**)
$$y = x^2 - 7x + 6$$

(vii)
$$y = x^2 - 10x + 16$$
 (viii) $y = x^2 - 8x + 12$

(viii)
$$y = x^2 - 8x + 12$$

$$(ix) y = 4x^2 - 60x + 176$$

(ix)
$$y = 4x^2 - 60x + 176$$
 (x) $y = 10x^2 - 140x + 490$

Question 4

Factorise;

(i)
$$y = x^2 + 15x + 50$$

(ii)
$$y = x^2 + 5x - 50$$

(iii)
$$y = x^2 - 15x + 50$$
 (iv) $y = x^2 - 5x - 50$

$$(iv)$$
 $y = x^2 - 5x - 50$

Question 5

A quadratic has two real negative roots, *A* and *B*.

The sum of the negative roots is 13.

The product of the negative roots is 42.

What are the two negative roots?

Question 6

A quadratic has two real negative roots, *A* and *B*.

The sum of the negative roots is 5.

The product of the negative roots is -204.

What are the two negative roots?