5.1 Examination Style Questions

The Question: Solve the simultaneous equations

$$y = x^2$$

This a quadratic curve

$$y = 2x + 3$$

This is a straight line

The Solution: Using the method of substitution.

$$x^2 = 2x + 3$$

• Rearranging equations into the form f(x) = 0

$$x^2 - 2x - 3 = 0$$

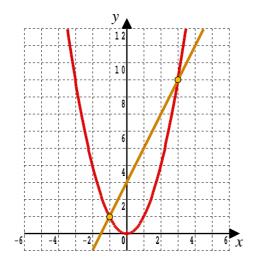
• Factorising quadratics

$$(x+1)(x-3)=0$$

• Solving quadratic equations

Either
$$x + 2 = 0$$
 or $x - 3 = 0$

$$x = -1$$
 or $x = 3$


But this is not the final answer!

The final answer is the points where the straight line intersects the quadratic curve. Use the equation of the line y = 2x + 3 with x is 2 and then with x is 3 to get,

The Final Solutions :
$$(-1, 1)$$
 or $(3, 9)$

5.2 Understanding What Has Been Achieved

On the graph below, the quadratic curve $y = x^2$ has been plotted. So too, has the straight line, y = 2x + 3

The line meets the curve at (-1, 1) and also at (3, 9). (Thus verifying, geometrically, the answers previously obtained algebraically)

5.3 Exercise

Question 1

Use the method of substitution to obtain a quadratic equation in the single variable, x. Solve your equation, and find the possible pairs of values for x and y.

(i)
$$y = x^2$$
 (ii) $y = x^2$ $y = 8x - 12$ $y = 11x - 28$

(iii)
$$y = x^2$$
 (iv) $y = x^2 + 10$
 $y = 2x + 24$ $y = 4 - 7x$

(v)
$$y = x^2 - 14$$

 $y = 2x + 21$

(vi)
$$y = x^2 + 3$$

 $y = 30 - 6x$

(vii)
$$y = x^2 + 2x$$

 $y = 5x + 28$

(viii)
$$y = x^2 - 4x + 2$$

 $y = 7x - 8$

(ix)
$$y = x^2 + 3x - 10$$
 (x) $y = x^2$
 $y = 4x + 20$ $y = 7x - 12$

5.4 Examination Question

GCSE, November 2006, paper 3H, Q18 Solve the simultaneous equations

$$y = x^2$$
$$y = 2x + 15$$

[5 marks]

This document is a part of a Mathematics Community Outreach Project initiated by Shrewsbury School It may be freely duplicated and distributed, unaltered, for non-profit educational use In October 2020, Shrewsbury School was voted "Independent School of the Year 2020" © 2025 Number Wonder

Teachers may obtain detailed worked solutions to the exercises by email from MHHShrewsbury@Gmail.com