5.1 Iteration Theory

In general, iterations are of the form;

$$x_{n+1} = f(x_n)$$

Once sufficiently near the fixed point of an iteration, whether the iteration will convergence or diverge depends upon the gradient of

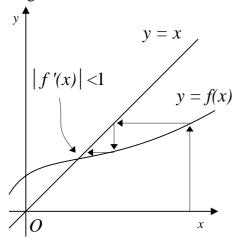
$$y = f(x)$$

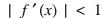
at the intersection with

$$y = x$$

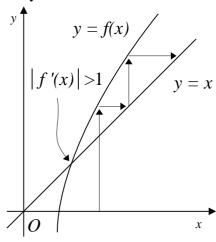
The condition for convergence is that at that point of intersection,

Diagrams of iterations will be investigated shortly - look out for these situations;

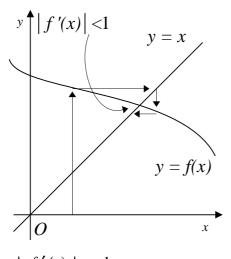




staircase converges

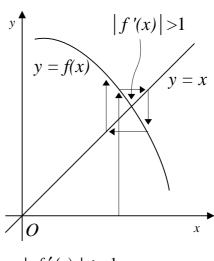


staircase diverges



 $\mid f'(x) \mid < 1$

cobweb converges



 $\mid f'(x) \mid > 1$

cobweb diverges

5.2 Picturing Iteration : Cobweb & Staircase Diagrams

An Investigation

Consider the iterative relation;

$$x_{n+1} = \frac{x_n^2 - 2x_n + 5}{4}$$

which you are going to iterate from four different starting points.

<i>X</i> 0	1	3	5	5.5
<i>X</i> 1				
<i>x</i> ₂				
Х 3				
X 4				
<i>X</i> 5				
<i>X</i> 6				

- (i) Complete the table, each column being from a different initial value, x_0
- (ii) Given that

$$g(x) = \frac{x_n^2 - 2x_n + 5}{4}$$

differentiate to find g'(x)

(iii) Find
$$g'(1)$$
 and $g'(5)$

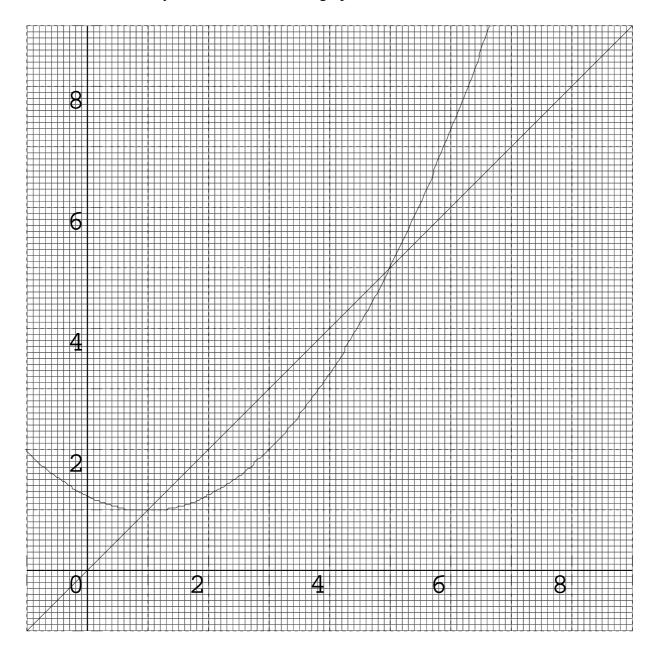
Plotted below is the curve;

$$y = \frac{x^2 - 2x + 5}{4}$$

and the line;

$$y = x$$

(iv) Plot your iterations onto this graph.



5.3 Exercise

Question 1

Consider the iterative relation;

$$x_{n+1} = \frac{12}{x_n} + 1$$

$$x_0 = 6$$

- (a) Calculate to four decimal places;
 - $(i) x_1 =$

(iv) $x_4 =$

(ii) $x_2 =$

(vi) $x_5 =$

(iii) $x_3 =$

- (**vii**) $x_6 =$
- (**b**) Plot a cobweb diagram of the iterative process for x_0 , x_1 , x_2 , ..., x_6 . Use the graph on the following page.
- (c) Prove that 4 is a fixed point of the iteration by showing that if $x_n = 4$ exactly, then $x_{n+1} = 4$ exactly.

(\mathbf{d}) At a fixed point, X, of the iteration

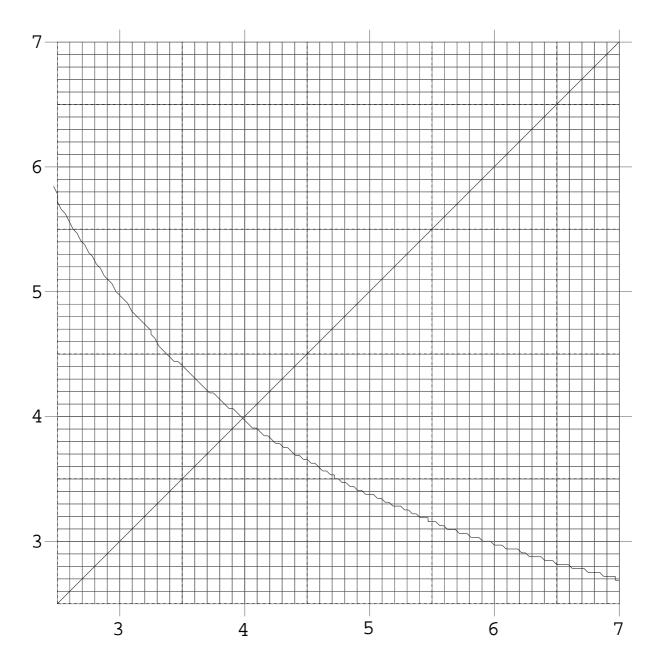
$$x_{n+1} = x_n = X$$

By replacing x_{n+1} and x_n with X in the iterative formula, rearrange the formula and so prove that, in addition to the fixed point at 4 there is another fixed point of this iteration. State the value of this other fixed point.

(e) With

$$f(x) = \frac{12}{x} + 1$$

calculate the value of the gradient at each of the two fixed points. Explain what this tells you about each fixed point.



Question 2

Consider the iterative relation;

$$x_{n+1} = ln(100 x_n)$$

$$x_0 = 0.5$$

(a) Calculate to four decimal places;

$$(i)$$
 $x_1 =$

$$(ii) x_2 =$$

(iii)
$$x_3 =$$

- (**b**) Plot a cobweb diagram of the iterative process for x_0 , x_1 , x_2 , x_3 . Use the graph on the following page.
- (c) Given that

$$f(x) = ln(100x) - x$$

prove that the fixed point of the iteration is, to two decimal places 6.47.

(**d**) Let

$$g(x) = ln(100x)$$

Use the rule of logs which states;

$$ln(ab) = lna + lnb$$

to help determine g'(x) and hence show that the fixed point is an attractor.

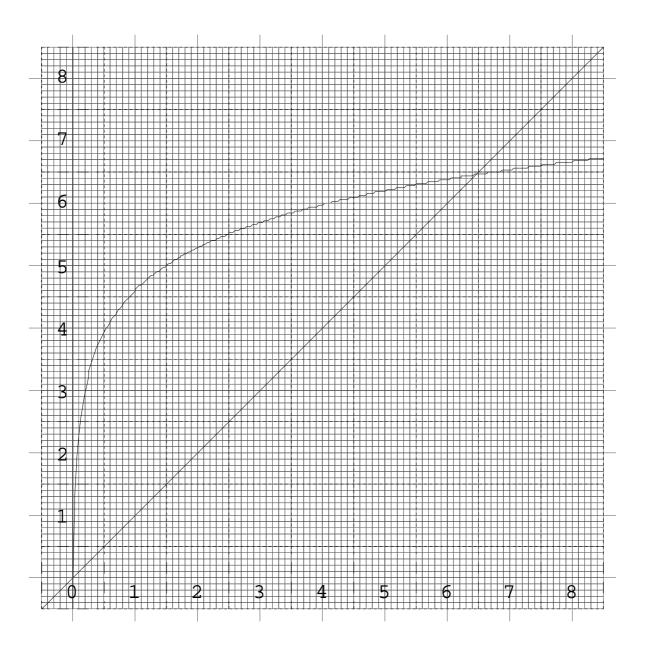
(e) Predict what will happen if the iteration starts with

$$(i)$$
 $x_0 = 8$

(ii)
$$x_0 = 0.05$$

(iii)
$$x_0 = 0.01$$

Test your predictions and comment.



Question 3

(a) Show that

$$f(x) = x \ln x - 3$$

has a root between 2 and 3.

(**b**) Show that

$$x \ln x - 3 = 0$$

can be rearranged to give the iterative relationship

$$x_{n+1} = \frac{3}{\ln x_n}$$

- (c) With $x_0 = 2$, calculate x_1 and x_2 .
- (**d**) Plot the iterative process x_0 , x_1 and x_2 on a cobweb diagram. Use the graph on the following page.
- (e) What you have done so far, indicates that this iteration may be problematical. Explain what the nature of the problem is.
- (f) Iterate sufficiently to locate the root of f(x) correct to 3 decimal places. Write down the your answer.
- (g) Prove that your **part** (f) answer is indeed the root correct to 3 decimal places.

