Numerical Methods: Year 2

8.1 Examination Questions On The Newton-Raphson Iteration Formula

Given an equation of the form

$$f(x) = 0$$

the Newton-Raphson iteration formula to find numerical solutions is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

8.2 Exercise

Question 1

FP1 Examination Question, June 2011, Q4

$$f(x) = x^2 + \frac{5}{2x} - 3x - 1$$
 $x \neq 0$

(a) Use differentiation to find f'(x)

[2 marks]

The root α of the equation f(x) = 0 lies in the interval [0.7, 0.9]

(**b**) Taking 0.8 as a first approximation to α , apply the Newton-Raphson process once to f(x) to obtain a second approximation to α . Give your answer to 3 decimal places

Question 2

FP1 Examination Question, June 2008, Q2

$$f(x) = 4\cos x + e^{-x}$$

(a) Show that the equation f(x) = 0 has a root α between 1.6 and 1.7

[2 marks]

(**b**) Taking 1.6 as your first approximation to α , apply the Newton-Raphson procedure once to f(x) to obtain a second approximation to α . Give your answer to 3 significant figures

Question 3

FP1 Examination Question, June 2016, Q2

$$f(x) = 3x^{\frac{3}{2}} - 25x^{-\frac{1}{2}} - 125$$
 $x > 0$

(a) Find f'(x)

[2 marks]

The equation f(x) = 0 has a root α in the interval [12, 13]

(**b**) Using $x_0 = 12.5$ as a first approximation to α , apply the Newton-Raphson process once to f(x) to find a second approximation to α . Give your answer to 3 decimal places

Question 4

FP1 Examination Question, June 2017, Q1

$$f(x) = \frac{1}{3}x^2 + \frac{4}{x^2} - 2x - 1 \qquad x > 0$$

(a) Show that the equation f(x) = 0 has a root α in the interval [6,7]

[2 marks]

(**b**) Taking 6 as a first approximation to α , apply the Newton-Raphson process once to f(x) to obtain a second approximation to α . Give your answer to 2 decimal places

$\boldsymbol{\wedge}$	4.	_
()	uestion	5

FP1 Examinat	ion Ouestion.	January 2	2010.	O2
--------------	---------------	-----------	-------	----

$$f(x) = x \cos x - 2x + 5$$

(a) Show	w that $f(x)$) = 0 has a roo	ot α in the inte	erval [2,2.1]
----------	---------------	-----------------	-------------------------	---------------

[2 marks]

(**b**) Taking 2 as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to obtain a second approximation to α . Give your answer to 2 decimal places

[5 marks]

(c) Show that your answer to part (b) gives α correct to 2 decimal places

[2 marks]