GCSE Mathematics Kinematics

6.1 Acceleration

A motorbike accelerates from a speed of 4ms⁻¹ at a constant rate of 1.5ms⁻²

After 1 second its change in speed is : ∴ speed =

After 2 seconds its change in speed is : ... speed =

After 3 seconds its change in speed is : ∴ speed =

After 4 seconds its change in speed is : ∴ speed =

After t seconds its change in speed is : \therefore speed =

6.2 Formulae for constant acceleration

TRUE FOR ZERO ACCELERATION

 $Distance = Speed \times Time$

TRUE FOR ZERO ACCELERATION


TRUE FOR CONSTANT NON-ZERO ACCELERATION

Distance = Average Speed × Time

TRUE FOR CONSTANT NON-ZERO ACCELERATION

TRUE FOR CONSTANT NON-ZERO ACCELERATION

 $acceleration = \frac{change\ in\ Speed}{change\ in\ Time}$

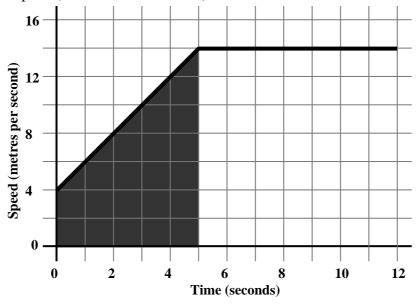
TRUE FOR CONSTANT NON-ZERO ACCELERATION

6.3 Example

A motorbike accelerates uniformly from 6 ms⁻¹ to 24 ms⁻¹ in 3 seconds.

- (i) What is the motorbike's change in speed?
- (ii) What is its rate of acceleration?

6.4 Exercise


Question 1

A motorbike accelerates uniformly from 5m/s to 14m/s in 3 seconds.

- (i) What is the motorbike's change in speed?
- (ii) What is its rate of acceleration?

Question 2

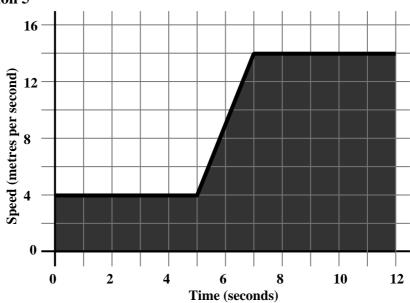
The Speed-Time graph shows a car accelerating for 5 seconds, then moving at a constant speed (with zero acceleration).

- (i) What is the car's speed when t = 0 seconds?
- (ii) What is the car's speed when t = 5 seconds?
- (iii) What is the change in speed between t = 0 and t = 5?
- (iv) Calculate the rate of acceleration over the five seconds.

HINT:
$$a = \frac{\Delta S}{\Delta T}$$

(v) Calculate the area shaded, which is the distance travelled whilst accelerating.

A pushbike accelerates uniformly from 2.5m/s to 7.5m/s in 10 seconds.


- (i) What is the pushbike's change in speed?
- (ii) What is its rate of acceleration?

Question 4

A truck accelerates uniformly from 3m/s to 17m/s in 7 seconds.

- (i) What is the truck's change in speed?
- (ii) What is its rate of acceleration?

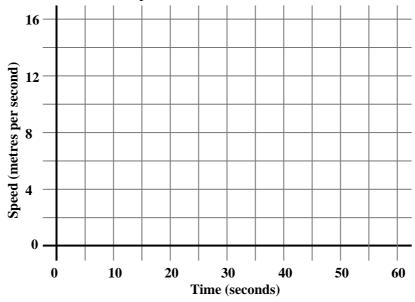
A car's speed over a twelve second period is given by the Speed - Time graph.

- (i) Between which two times was the car accelerating?
- (ii) Calculate the rate of acceleration.
- (iii) Calculate the total distance travelled by the car over the twelve seconds.

A sports car accelerates at 3m/s² for 4 seconds.

(i) What is its change in speed?

HINT: $\triangle S = a \times \triangle T$


The sports car was moving at 8m/s at the start of the acceleration.

(ii) What was its speed at the end of the acceleration?

Question 7

A car is moving at a constant speed of 6m/s between t = 0 and t = 10 seconds. Then, over 40 seconds, it accelerates uniformly to a speed of 16m/s.

It then moves at a constant speed of 16m/s for 10 seconds.

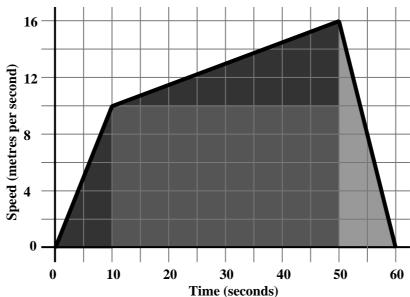
- (i) Draw the Speed Time graph for the car movements described.
- (ii) What is the rate of acceleration between t = 0 and t = 10?
- (iii) What is the rate of acceleration between t = 10 and t = 50?
- (iv) What is the rate of acceleration between t = 50 and t = 60?
- (v) Calculate the distance travelled over the 60 seconds.

A bus accelerates at 0.5m/s² for 24 seconds.

(i) What is its change in speed?

HINT: $\Delta S = a \times \Delta T$

The bus was moving at 5.5m/s at the start of the acceleration.


(ii) What was its speed at the end of the acceleration?

Question 9

How long will it take a car, accelerating uniformly at $2m/s^2$ to increase its speed from 3m/s to 21m/s?

HINT:
$$\Delta T = \frac{\Delta S}{a}$$

Calculate the rate of acceleration between;

- (i) t = 0 and t = 10
- (ii) t = 10 and t = 50
- (iii) t = 50 and t = 60

A car can slow down at a rate of 5m/s².

- (a) It is travelling at 10m/s. (About 22mph)
 - (i) How many seconds will it take to stop?

HINT:
$$\Delta T = \frac{\Delta S}{a}$$

(ii) How far will it move in that time?

HINT :
$$D = Av S \times T$$

- (**b**) It is travelling at 20 m/s. (About 45mph)
 - (i) How many seconds will it take to stop?
 - (ii) How far will it move in that time?
- (c) It is travelling at 30 m/s. (About 67mph)
 - (i) How many seconds will it take to stop?
 - (ii) How far will it move in that time?
- (**d**) It is travelling at 40 m/s. (About 90mph)
 - (i) How many seconds will it take to stop?
 - (ii) How far will it move in that time?
- (e) Put your part (a), (b), (c) and (d) answers into the table;

speed m/s (mph)	10 (22)	20 (45)	30 (67)	40 (90)
time to stop seconds				
distance to stop metres				

(f) Comment:

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School

It may be freely duplicated and distributed, unaltered, for non-profit educational use

In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**"

© 2025 Number Wonder