
## A-Level Pure Mathematics

Year 1 and Year 2

# V E C T O R S I I



# VECTORS II

## Chapter 1

A-Level Pure Mathematics Vectors II: Year 1 and Year 2

#### 1.1 Vectors and Kinematics

## Example 1

A particle moves with initial velocity  $(7 i + 6 j) \text{ ms}^{-1}$ It is accelerating at  $(-3 i + 5 j) \text{ ms}^{-2}$ 

(i) What is its velocity when t = 4 seconds?

(ii) What is its speed when t = 4 seconds?

## Example 2

A particle is moving with initial velocity (-2 i + j) ms<sup>-1</sup> A constant acceleration of (i - 2j) ms<sup>-2</sup> acts upon it.

(i) What is its displacement vector over the next 5 seconds?

(ii) If it was initially at position (3i + 4j), where is it when t is 5 seconds?

## 1.2 Exercise

### **Question 1**

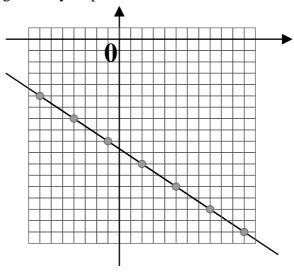
A particle is initially moving with velocity (3 i + j) ms<sup>-1</sup> It is constantly accelerating at (-i + 2 j) ms<sup>-2</sup>

(i) What is its velocity when t = 7 seconds?

(ii) What is its speed when t = 7 seconds?

## **Question 2**

A particle is moving with initial velocity (3 i + 2 j) ms<sup>-1</sup> A constant acceleration of (4 i - j) ms<sup>-2</sup> acts upon it.


(i) What is its displacement vector over the next 3 seconds?

(ii) If initially at position (-20 i + 2 j), what is its position when t is 3 seconds?

## **Question 3**

M1 examination question, May 2010, Q1 with Hint added A particle P is moving with constant velocity (-3 i + 2 j) ms<sup>-1</sup> At time t = 6 s P is at the point with position vector (-4 i - 7 j) m Find the distance of P from the origin at time t = 2 s

**HINT**: This diagram may help...



[ **5** marks ]

#### **Question 4**

M1 examination question, January 2009, Q1 A particle P moves with constant acceleration (2i - 5j) ms<sup>-2</sup> At time t = 0 P has speed u ms<sup>-1</sup> At time t = 3 s, P has velocity (-6i + j) ms<sup>-1</sup> Find the value of u

| <b>^</b>        | _ |
|-----------------|---|
| <b>Ouestion</b> | • |
| Oucsuon         | ~ |

M1 examination question, January 2008, Q6 [In this question, the unit vectors **i** and **j** are due east and due north respectively ]

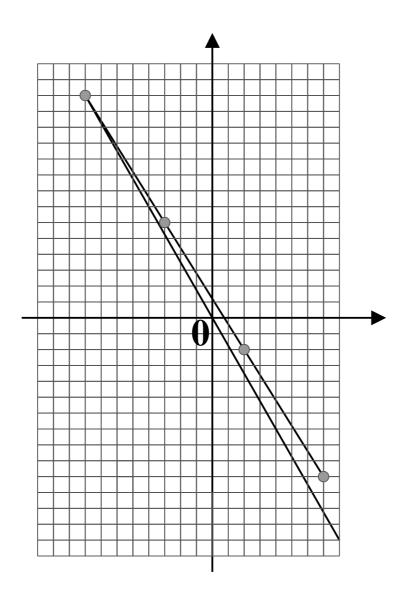
A particle *P* is moving with constant velocity (-5 i + 8 j) ms<sup>-1</sup>

(a) Find the speed of P

- [2 marks]
- (**b**) Find the direction of motion of *P*, giving your answer as a bearing

[3 marks]

At time t = 0 P is at the point A with position vector (7i - 10j) m relative to a fixed origin O. When t = 3 s, the velocity of P changes and it moves with velocity (ui + vj) ms<sup>-1</sup>, where u and v are constants. After a further u s, it passes through u and continues to move with velocity (ui + vj) ms<sup>-1</sup>


(c) Find the values of u and v

[5 marks]

(**d**) Find the total time taken for *P* to move from *A* to a position which is due south of *A* 

[ 3 marks ]

**HINT**: This diagram may help...



## **Question 6**

M1 examination question, January 2010, Q7

[ In this question, the unit vectors  $\mathbf{i}$  and  $\mathbf{j}$  are horizontal unit vectors due east and due north respectively and position vectors are given with respect to a fixed origin ]

A ship *S* is moving along a straight line with constant velocity.

At time t hours the position vector of S is s km

When 
$$t = 0$$
,  $s = 9i - 6j$ 

When 
$$t = 4$$
,  $s = 21 i + 10 j$ 

(a) Find the speed of S

[ 4 marks ]

(**b**) Find the direction in which S is moving, giving your answer as a bearing

(c) Show that s = (3t+9)i + (4t-6)j

[ 2 marks ]

A lighthouse L is located at the point with position vector ( 18 i + 6 j ) km When t = T, the ship S is 10 km from L.

( $\mathbf{d}$ ) Find the possible values of T.

| $\sim$ | 4 •   | _  |
|--------|-------|----|
| Ques   | STIAN | ٠, |
| Out    |       |    |

M1 examination question, June 2007, Q7

A boat *B* is moving with constant velocity. At noon, *B* is at the point with position vector (3i - 4j) km with respect to a fixed origin *O*. At 14:30 on the same day, *B* is at the point with position vector (8i + 11j) km

(a) Find the velocity of b, giving your answer in the form p i + q j

[ 3 marks ]

At time t hours after noon, the position vector of B is b km

(**b**) Find, in terms of t, an expression for  $\boldsymbol{b}$ 

| nother boat $C$ is also moving with constant velocity. The position vector of $C$ , km, at time $t$ hours after noon, is given by $\mathbf{c} = (-9\mathbf{i} + 20\mathbf{j}) + t(6\mathbf{i} + \lambda\mathbf{j})$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| where $\lambda$ is a constant.                                                                                                                                                                                      |
| Fiven that $C$ intercepts $B$ , $\mathbf{c}$ ) find the value of $\lambda$                                                                                                                                          |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
| [ 5 marks ] show that, before C intercepts B, the boats are moving with the same speed                                                                                                                              |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
| [ 3 marks ]                                                                                                                                                                                                         |
| [0.11111110]                                                                                                                                                                                                        |