

Lesson 3

Perimeter, Area & Volume : Year 9

Non Calculator

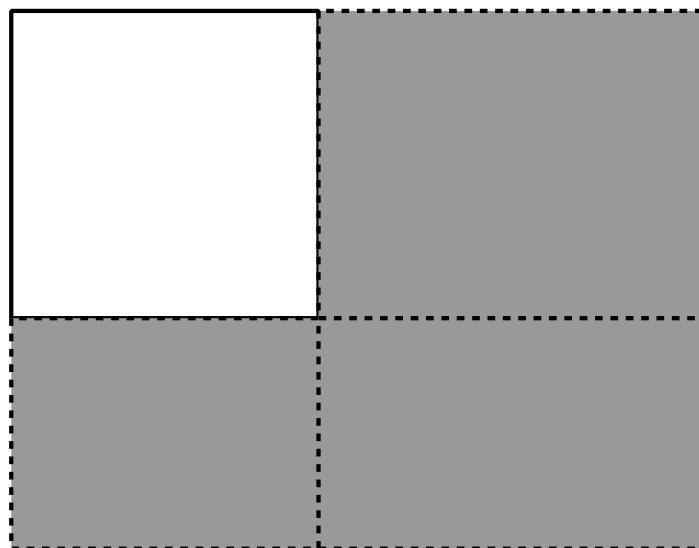
3.1 In this lesson we will...

- Look at the famous *Growing Square* problem.
- Progress onto calculating areas using algebra rather than just numbers.

3.2 The *Growing Square* problem

Consider a square of side length x cm.

It is given some food.


(A good square meal)

It grows !

By 5 cm to the right and 3 cm down.

Can you see why $(x + 5)(x + 3)$ must equal $x^2 + 8x + 15$?

Explain what you see.

3.3 Exercise

Question 1

Calculate the AREA in terms of x of these growing squares

Mathematicians call this *expanding the brackets*

(i) $(x + 6)(x + 3)$

(ii) $(x + 8)(x + 7)$

(iii) $(x + 7)(x + 5)$

(iv) $(x + 5)(x + 16)$

(v) $(x + 4)(x + 9)$

(vi) $(x + 8)(x + 12)$

$$(\text{vii}) \quad (x + 5)(x + 12)$$

$$(\text{viii}) \quad (x + 25)(x + 7)$$

$$(\text{ix}) \quad (x + 7)^2$$

$$(\text{x}) \quad (x + 9)(x + 8)$$

$$(\text{xii}) \quad (x + 14)(x + 3)$$

$$(\text{xii}) \quad (x + 16)(x + 4)$$

Question 2

Expand the brackets;

(i) $(2x + 7)(3x + 2)$

(ii) $(7x + 8)(7x + 2)$

(iii) $(3x + 1)(5x + 6)$

(iv) $(11x + 5)(6x + 1)$

(v) $(8x + 5)(x + 5)$

(vi) $(3x + 13)(4x + 10)$

$$(\text{vii}) \quad (3x + 7)(7x + 4)$$

$$(\text{viii}) \quad (5x + 12)(4x + 5)$$

$$(\text{ix}) \quad (2x + 9)(2x + 5)$$

$$(\text{x}) \quad (6x + 11)(5x + 11)$$

$$(\text{xii}) \quad (9x + 4)(3x + 8)$$

$$(\text{xiii}) \quad (3x + 16)(7x + 3)$$