Calculator needed

3.1 Finding the hcf and lcm of pairs of large numbers

As the number pairs get bigger it becomes harder to mentally spot what the *hcf* and the *lcm* are. A system is needed to methodically work them out.

3.2 Strategy

To find the hcf and lcm of a and b.

 \diamond **STEP 1:** Write each of *a* and *b* as a products of primes.

 \diamond **STEP 2:** The $hcf\{a, b\}$ is all the **common** primes multiplied together.

 \diamondsuit **STEP 3:** The $lcm \{a, b\}$ is $\frac{ab}{hcf\{a,b\}}$

3.3 Example

Find the *hcf* and *lcm* of 210 and 245.

$$\begin{array}{rcl}
210 & = & 2 \times 3 \times 5 \times 7 \\
245 & = & 5 \times 7 \times 7 \\
\hline
hcf & = & 5 \times 7
\end{array}$$

Use calculator's FACT button Use calculator's FACT button

$$\therefore$$
 hcf {210, 245} = 35

$$lcm = \frac{210 \times 245}{35}$$
$$= 1470$$

$$:$$
 $lcm \{210, 245\} = 1470$

(Using a calculator)

Three cheers for the FACT button!

FACT = "What are the prime factors of?"

Mavis: "I had a really big number† to break down into prime factors.

I was in tears but then George showed me the FACT button.

It saved my life."

3.4 Exercise

Question 1

Find the hcf and lcm of 275 and 297

Question 2

Find;

- (i) *hcf* {220, 462}
- (**ii**) *lcm* {220, 462}

- (i) Write 336 as a product of primes
- (ii) Write 630 as a product of primes
- (iii) Calculate *hcf* {336, 630}
- (**iv**) Calculate *lcm* {336, 630}

Question 4

- (i) Find the *lcm* of 9 and 6 (HINT: Work out the *hcf* first)
- (**ii**) Find the *lcm* of 20 and 12
- (**iii**) Find the *lcm* of 18 and 12
- (iv) Find the *lcm* of 24 and 18

- (i) Write 875 as a product of primes
- (ii) Write 910 as a product of primes
- (iii) Calculate *hcf* {875, 910}
- (**iv**) Calculate *lcm* {875, 910}

Question 6

- (i) Find the *lcm* of 7 and 11 (Hint: Work out the *hcf* first)
- (ii) Find the *lcm* of 5 and 13
- (iii) Two prime numbers are p and q What is $lcm \{p, q\}$?

- (i) Find the lcm of 4 and 16
- (ii) Find the *lcm* of 5 and 25
- (iii) Two numbers are s and s^2 What is $lcm \{s, s^2\}$?

Question 8

- (i) Find the lcm of 2 and 3
- (ii) Find the *lcm* of 3 and 4
- (iii) Two consecutive integers are a and b What is the $lcm \{a, b\}$?

Find the *lcm* of 525 and 2205

A Table of Multiples

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54
4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108
7	14	21	28	35	42	49	56	63	70	77	84	91	98	105	112	119	126
8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128	136	144
9	18	27	36	45	54	63	72	81	90	99	108	117	126	135	144	153	162
10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
11	22	33	44	55	66	77	88	99	110	121	132	143	154	165	176	187	198
12	24	36	48	60	72	84	96	108	120	132	144	156	168	180	192	204	216

Using the table of multiples, or otherwise, write down;

(i)
$$lcm{2, 5}$$

(ii)
$$lcm \{3, 7\}$$

(iv)
$$lcm \{4, 9\}$$

Which of (i), (ii), (iii) and (iv) disproves the following theories;

THEORY A: The *lcm* of two numbers, x and y, is always x times y.

THEORY B: The *lcm* of two numbers, x and y, is x times y only if x and y are prime numbers.

Write down a correct theory that tells you when the *lcm* of two numbers, *x* and *y* is *x* times *y*.