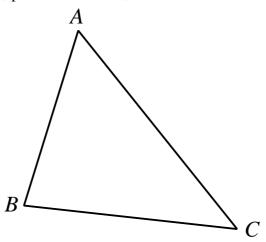

Non-Right Angled Trigonometry

4.1 The Cosine Rule

This is Pythagoras' Theorem for triangles without a right angle. Used when two sides and the included angle are known and the third side sought.

4.2 Introductory Question

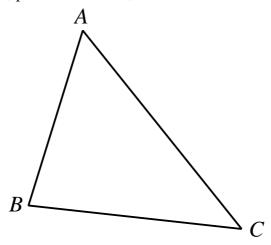
(i) On $\triangle ABC$, place the letters a, b and c.


- (ii) On $\triangle ABC$, mark on that;
 - *AC* is of length 6.3cm.
 - AB is of length 7.8cm.
 - $\angle A \text{ is } 70^{\circ}.$
 - *BC* is the length *x*, which is to be found.
- (iii) Mark on the *included* angle with a *.
- (iv) Use the cosine rule to find the length of x correct to three significant figures.

(v) Find the area of $\triangle ABC$, correct to three significant figures.

4.3 Exercise

Question 1

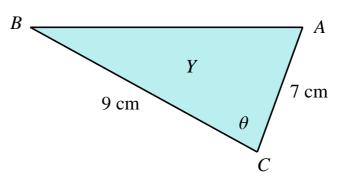

(i) On $\triangle ABC$, place the letters a, b and c.

- (ii) On $\triangle ABC$, mark on that;
 - AC is of length 8cm.
 - *AB* is of length 3cm.
 - $\angle A \text{ is } 60^{\circ}.$
 - BC is the length x, which is to be found.
- (iii) Mark on the *included* angle with a *.
- (iv) Use the cosine rule to find the length of x.

(v) Find the area of $\triangle ABC$.

(i) On $\triangle ABC$, place the letters a, b and c.

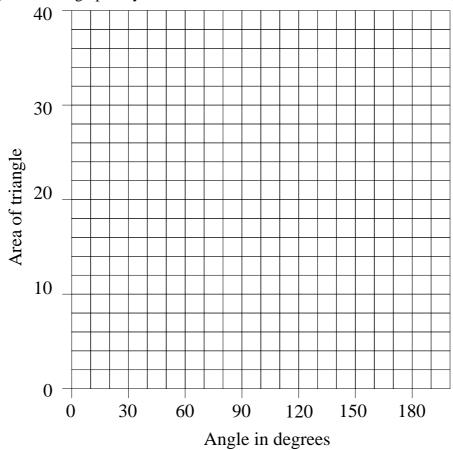
- (ii) On $\triangle ABC$, mark on that;
 - AC is of length 17 cm.
 - AB is of length 15 cm.
 - $\angle A \text{ is } 70^{\circ}.$
 - BC is the length x, which is to be found.
- (iii) Mark on the *included* angle with a *.
- (iv) Use the cosine rule to find the length of x.


(v) Find the area of $\triangle ABC$.

 $\triangle ABC$ has AB = 5 cm, AC = 2 cm, and $\angle A = 78.5^{\circ}$.

- (i) Sketch, roughly, $\triangle ABC$ and mark on the known lengths and angle.
- (ii) Find the length of side BC.
- (iii) Find the area of $\triangle ABC$.

 $\triangle ABC$ has AB = 6 cm, AC = 7 cm, and $\angle A = 125^{\circ}$.


- (i) Sketch, roughly, $\triangle ABC$ and mark on the known lengths and angle.
- (ii) Find the length of side BC.
- (iii) Find the area of $\triangle ABC$.

(i) Work out the area Y for the values of θ given in the table below;

	θ	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°
	V										
l	1										

(ii) Plot a graph of your results with θ in the x-axis and area Y on the y-axis

(iii) What happens as θ continues to increase beyond 90° and up to 180°?

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**"
© 2025 Number Wonder