
5.1 Alphabet Soup Cosine Rule

In the previous Lesson, all our triangles were labelled A, B and C and every problem was arranged so that length c was to be found.

Often different lettering is used, as the next example illustrates.

5.2 Example

(i) On $\triangle WKD$, place the letters w, k and d.

- (ii) On $\triangle WKD$, mark on that;
 - WD is of length 16.3 cm.
 - WK is of length 11.6 cm.
 - $\angle W$ is 34°.
 - KD is the length x, which is to be found.
- (iii) Mark the *included* angle with a star, *.
- (iv) For $\triangle WKD$, write down the cosine rule for w^2 , in terms of k, d and W.
- (v) Use the cosine rule to find the length of x.

(vi) Find the area of $\triangle WKD$.

5.3 Exercise

Question 1

For $\triangle HMS$, write down the cosine rule for h^2 , in terms of m, s and H.

Question 2

For $\triangle BAT$, write down the cosine rule for a^2 , in terms of b, t and A.

Question 3

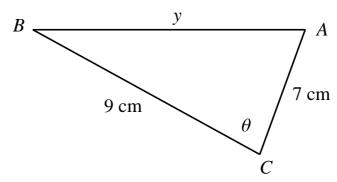
For $\triangle MAD$, write down the cosine rule for m^2 .

Question 4

For $\triangle ABC$, write down the cosine rule for;

- (i) c^2
- (ii) b^2
- (iii) a^2

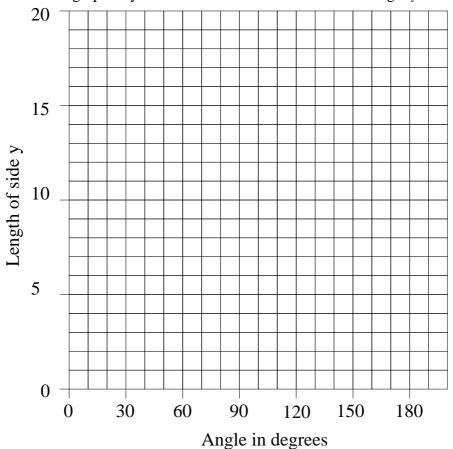
 $\triangle ZEN$ has EN = 4.3 cm, ZE = 6.5 cm, and $\angle E = 66^{\circ}$.


- (i) Sketch, roughly, $\triangle ZEN$ marking on the two known lengths & included angle.
- (ii) Write down the cosine rule for e^2 .
- (iii) Find the length of side ZN, accurate to 2 decimal places.
- (iv) Find the area of $\triangle ZEN$, accurate to 2 decimal places.

 $\triangle ICU$ has IU = 10.2 cm, IC = 3.8 cm, and $\angle I = 41.5^{\circ}$.

- (i) Sketch, roughly, $\triangle ICU$ marking on the two known lengths & included angle.
- (ii) Write down the cosine rule for i^2 .
- (iii) Find the length of side CU, clearly stating the units of your answer.
- (iv) Find the area of $\triangle ICU$, clearly stating the units of your answer.

 $\triangle OMG$ has OM = 5.3 km, MG = 7.9 km, and $\angle M = 127^{\circ}$.


- (i) Sketch, roughly, $\triangle OMG$ marking on the two known lengths & included angle.
- (ii) Write down the cosine rule for m^2 .
- (iii) Find the length of side OG, clearly stating the units of your answer.
- (iv) Find the area of $\triangle OMG$, clearly stating the units of your answer.

(i) Work out the length y for the values of θ given in the table below;

	θ	0°	30°	60°	90°	120°	150°	180°
	ν,							
l	У							

(ii) Plot a graph of your results with θ on the x-axis and length y on the y-axis

(iii) What happens as θ continues to increase beyond 180° and up to 360°?

This document is a part of a **Mathematics Community Outreach Project** initiated by Shrewsbury School
It may be freely duplicated and distributed, unaltered, for non-profit educational use
In October 2020, Shrewsbury School was voted "**Independent School of the Year 2020**"

© 2025 Number Wonder