8.1 The Upside Down Sine Rule

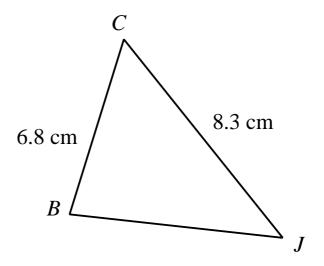
Previously, The Sine Rule was used to find the length of a triangle's side given

• another length

and • two (and ∴ three) angles.

If we know

• the length of two of a triangle's sides

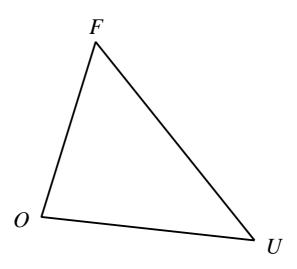

and

• an excluded angle

then The Sine Rule can be used 'upside down' to find the other excluded angle.

Example 1

(i) On the following triangle mark the two excluded angles, each with a *.



- (ii) On the diagram place the letters j, c and b.
- (iii) Write down The Sine Rule in terms of J, j, C, c, B and b.

(iv) Write down the corresponding 'upside down' version of The Sine Rule.

Example 2

A triangle, $\triangle UFO$, is shown below.

- (i) On the triangle place the letters u, f and o.
- (ii) Onto the triangle add the facts that
 - ∠ *U* = 53°
 - UF = 8.4 cm
 - FO = 7.6 cm
 - \angle O = x, the angle to be found.
- (iii) On the triangle mark the two excluded angles, each with a \ast .
- (iv) Write down the 'upside down' version of The Sine Rule for the triangle.
- (\mathbf{v}) Find angle x, in degrees and accurate to 3 significant figures.

HINT □ Circle which to find

☐ Box known pair

8.2 Exercise

Question 1

(i) On the following triangle mark the two excluded angles, each with a *.

- (ii) On the diagram place the letters e, l and o.
- (iii) Write down The Sine Rule in terms of E, e, L, l, O and o.
- (iv) Write down the corresponding 'upside down' version of the sine rule.

Question 2

Which is the correct ending for the given sentence?

I'd use The Sine Rule (upside down version) to find an excluded angle if I knew....

- (a) \Box The lengths of all three sides of a triangle, and no angles.
- (\mathbf{b}) \square The length of two sides and the included angle.
- (\mathbf{c}) \square The length of two sides and one excluded angle.
- (\mathbf{d}) \square All three angles, but not the length of any side.

In each case, calculate the value of *x* in degrees, correct to three significant figures;

(i)
$$\sin x = 0.334$$

(ii)
$$\sin x = \frac{67}{80}$$

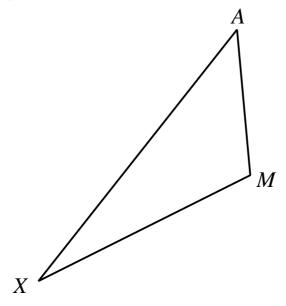
(iii)
$$\sin x = \frac{41.6 \times 0.5643}{34.2}$$

(iv)
$$\sin x = \frac{15.8 \times \sin 42^{\circ}}{21.5}$$

$$\sin x = \frac{7.1 \times \sin 62^{\circ}}{11.8}$$

$$(\mathbf{vi})$$

$$\sin x = \frac{28.6 \times \sin 82^{\circ}}{45}$$


Question 4

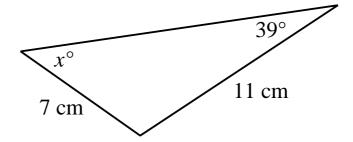
Solve to find the values of *x* in degrees, correct to three significant figures.

(i)
$$\frac{\sin x}{5} = \frac{9}{62} \qquad \frac{\sin x}{55} = \frac{\sin 24^{\circ}}{73}$$

(iii)
$$\frac{\sin x}{16} = \frac{\sin 35^{\circ}}{23} \qquad \frac{\sin x}{5.4} = \frac{\sin 60}{4.9}$$

A triangle, $\triangle MAX$, is shown below.

- (i) On the triangle place the letters m, a and x.
- (ii) Onto the triangle add the facts that
 - $\angle M = 104^{\circ}$
 - MX = 7.8 cm
 - XA = 12.7 cm
 - $\angle A = x$, the angle to be found.
- (iii) On the triangle mark the two excluded angles, each with a *.
- (iv) Write down the 'upside down' version of The Sine Rule for the triangle.
- (\mathbf{v}) Find angle x, in degrees and accurate to 3 significant figures.


HINT □ Circle which to find

☐ Box known pair

A triangle, $\triangle BEG$, is shown below.

- (i) On $\triangle BEG$ place the letters b, e and g.
- (ii) On $\triangle BEG$ add the facts that
 - $\angle B = x^{\circ}$, the angle to be found.
 - BG = 17.8 cm
 - GE = 14.9 cm
 - $\angle E = 130^{\circ}$.
- (iii) On $\triangle BEG$ mark the two excluded angles, each with a *.
- (iv) Write down the 'upside down' version of the sine rule for $\triangle BEG$.
- (\mathbf{v}) Find angle x, in degrees and accurate to 3 significant figures.

Find the size of the angle marked x, in degrees and accurate to 3 significant figures.

This is a tough question.

 ΔXYZ has XY of length 13.2 cm and length XZ of length 27.5 cm.

The angle at vertex Z is 24° .

Find the included angle at vertex X.

HINT : Find the excluded angle at vertex *Y* first, as this can be obtained using the 'upside down' version of The Sine Rule.