7.4 Homework

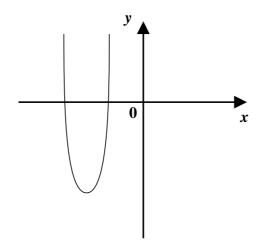
Additional Mathematics

A-Level Pure Mathematics: Year 1

Topics in Algebra

Any solution based entirely on graphical or numerical methods is not acceptable

Marks available: 50


Question 1

Consider the curve, $y = x^2 + 10x + 13$

(i) Rewrite the equation of the curve in completed square form.

[1 mark]

(ii) Hence add the coordinates of the minimum point to the sketch graph.

[1 mark]

(iii) What is the minimum value of the function
$$f(x) = x^2 + 10x + 13$$
?

[1 mark]

Question 2

Factorise completely;

(i)
$$x^2 + 11x + 28$$

(ii)
$$x^2 + x - 30$$

(iii)
$$3x^2 - 14x + 16$$


(iv)
$$2x^2 + x - 36$$

Consider the curve, $y = x^2 - 12x - 21$

Rewrite the equation of the curve in completed square form. (i)

[1 mark]

(ii) Hence add the coordinates of the minimum point to the sketch graph.

[1 mark]

For what value of x does the function $f(x) = x^2 - 12x - 21$ have (iii) its minimum value?

[1 mark]

Question 4

Solve the following equations;

(i)
$$x^2 + 7x - 8 = 0$$
 (ii) $x^2 - 2x - 35 = 0$

$$(ii) x^2 - 2x - 35 = 0$$

$$(iii) 3x^2 + 17x + 10 = 0$$

(iii)
$$3x^2 + 17x + 10 = 0$$
 (iv) $5x^2 + 4x - 33 = 0$

Consider the curve, $y = 4x^2 + 24x + 11$

Rewrite the equation of the curve in completed square form. (i)

[4 marks]

Hence sketch the graph of the curve with the coordinates of its minimum (ii) point clearly marked

[3 marks]

Question 6

Find the value of,

(i)
$$25^{\frac{3}{2}}$$

(ii)
$$27^{\frac{2}{3}}$$

(i)
$$25^{\frac{3}{2}}$$
 (ii) $27^{\frac{2}{3}}$ (iii) $\left(\frac{3}{2}\right)^{-4}$

[1, 1, 1 marks]

Question 7

Write each of the following in the form $a\sqrt{b}$ where a and b are integers and b is also square free;

(i)
$$\sqrt{45}$$

(ii)
$$\frac{6}{\sqrt{2}}$$

$$\sqrt{45}$$
 (ii) $\frac{6}{\sqrt{2}}$ (iii) $\frac{\sqrt{108}}{\sqrt{6}}$

Showing your method, rationalise the denominator of, $\frac{5+\sqrt{3}}{3-\sqrt{3}}$ and present your final answer in the form $a+b\sqrt{3}$ where a and b are constants to be found

[5 marks]

Question 9

(i) Find the values of a, b and c for which

$$5x^2 - 40x + 81 \equiv a(x+b)^2 + c$$

[4 marks]

(ii) Hence state the minimum value of the function,

$$f(x) = 5x^2 - 40x + 81$$

[1 mark]

(i) Find the values of a, b and c for which

$$4x^2 - 12x + 25 \equiv a(x+b)^2 + c$$

[4 marks]

(ii) Hence state the minimum value of the function,

$$f(x) = 4x^2 - 12x + 25$$

[1 mark]