A-Level Pure Mathematics : Year 1

Progress Test Revision

3.1 Example #1

Solve the equation, $9^{5x-3} = 27^{x+5}$

[3 marks]

3.2 Example #2

The equation $x^2 + 3mx + (4m + 1) = 0$, where m is a constant, has equal roots.

(i) Find the possible values of m

[4 marks]

(ii) For these values of m, solve the equation

$$x^2 + 3mx + (4m + 1) = 0$$

3.3 Revision Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 52

Question 1

Solve the equation, $8^{7x-6} = 16^{8-x}$

[3 marks]

Question 2

The equation $x^2 + 2mx + (3m + 4) = 0$, where m is a constant, has equal roots.

(i) Find the possible values of m

[4 marks]

(ii) For these values of m, solve the equation

$$x^2 + 2mx + (3m + 4) = 0$$

[4 marks]

Simplify the following algebraic expressions by first factorising the quadratics:

$$\frac{x^2 + 2x - 24}{x^2 - 3x - 54}$$

[2 marks]

Question 4

Solve simultaneously,

$$5x^2 - 4xy + y^2 = 13$$
$$y = x + 1$$

$$m(x) = x^3 + 13x^2 + ax + 63$$

(i) Given that x + 7 is a factor of m(x) determine the integer value of a

[2 marks]

(ii) Hence, factorise m(x) completely.

[4 marks]

Question 6

Determine the coordinates of the centre and the radius of the circle with equation,

$$x^2 + y^2 + 96x - 110y = 0$$

Determine the value of a

$$\frac{\sqrt{3}}{81} = 3^a$$

[3 marks]

Question 8

A circle, C, has equation,

$$(x-3)^2 + (y-15)^2 = 17^2$$

(\mathbf{i}) Write down the coordinates of the point X, the centre of the circle.

[2 marks]

(ii) What is the diameter of the circle?

[1 mark]

(iii) Give the coordinates of the points M and N, where the circle crosses the x-axis.

[3 marks]

(iv) What is the perimeter of triangle MXN?

[2 marks]

It is wished to solve the inequality,

$$\frac{5}{x-3} < 2 \qquad x \neq 3$$

(i) Explain the reason for the restriction, $x \ne 3$

[1 mark]

(ii) Explain why this inequality can not be solved by multiplying both sides by (x - 3)

[1 mark]

(iii) Solve the inequality by first multiplying both sides by $(x-3)^2$

[3 marks]

(iv) Explain why it was OK to multiply both sides by $(x-3)^2$

[1 mark]

The following equation, where k is a constant, has no real roots

$$kx^2 - 2kx + 3 = 0$$

Prove that k satisfies the inequality, $0 \le k < 3$

[4 marks]

Question 11

AS-Level Examination Question, May 2018, Q4 (Edexcel)

The line L_1 has equation 4y - 3x = 10

The line L_2 passes through the points (5, -1) and (-1, 8)

Determine, giving full reasons for your answer, whether lines L_1 and L_2 are parallel, perpendicular or neither.

[3 marks]