
Year 1

~ Pure Mathematics ~

EXPONENTIALS and LOGARITHMS

The graph of an exponential

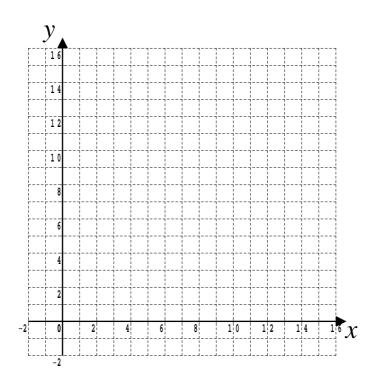
EXPONENTIALS and LOGARITHMS

Lesson 1

A-Level Pure Mathematics : Year 1

Exponentials and Logarithms

1.1 An Exponential Curve and its Inverse


(i) Complete the table of values for the exponential function given by

$$y = 2^x$$

х	-2	- 1	0	1	2	3	4
у				2	4		16

[2 marks]

(ii) Graph the function, using the values from the completed table.

[2 marks]

(iii) Use your graph, evidencing your method, to find $2^{2.5}$

[2 marks]

(iv)	Use your graph, evidencing your method, to help you solve the equation $2^x = 14$								
		[2 marks]							
(v)	Add the line $y = x$ to your graph.	[1 mark]							
(vi)	Reflect the exponential curve, plotted in part (ii), in the line $y = x$. The reflection curve is of the inverse function. The inverse of an exponential function is a logarithm function.	[2 marks]							
	In this case, the exponential function; $y = 2^x$ has as an inverse, the logarithm function; $y = log_2 x$								
(vii)	Use your reflection graph, evidencing your method, to find $log_2 9$	[2 marks]							
(viii)	Use your reflection graph, evidencing your method, to find log_2 16 Notice that this means, "2 to what power is 16?"								
		[2 marks]							
(ix)	This next question is 'off the graph'. State the value of $\log_2 64$ by realising that this means, "2 to what power is 64?"								

[1 mark]

1.2 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 40

Question 1

(i) State the value of,

 $log_3 81$

by realising that this means, "3 to what power is 81?"

(ii) State the value of,

 $log_2 32$

(iii) State the value of,

 log_{10} 1000000

(iv) State the value of,

log₄ 64

[4 marks]

Question 2

(i) State the value of,

$$log_3\left(\frac{1}{9}\right)$$

by realising that this means "3 to what power is $\frac{1}{9}$?"

(ii) State the value of,

$$log_2\left(\frac{1}{8}\right)$$

(iii) State the value of,

 $log_{2} 0.25$

(iv) State the value of,

$$log_3\left(\frac{1}{27}\right)$$

[4 marks]

Question 3

(i) Find x given that,

$$log_x 125 = 3$$

by realising that this means, "what to the power 3 is 125?"

(ii) Find x given that,

$$log_x 81 = 4$$

(iii) Find x given that,

$$log_{x} 64 = 2$$

(iv) Find x given that,

$$log_X 9 = 0.5$$

[4 marks]

Question 4

(i) Find x given that,

$$log_2 x = 3$$

by realising that this means, "2 to the power 3 is what?"

(ii) Find x given that,

$$log_{10}x = 5$$

(iii) Find x given that,

$$log_2 x = -3$$

(iv) Find x given that,

$$log_9 x = \frac{3}{2}$$

Question 5

(i) Find x given that,

$$log_{10} 10000 = x$$

by realising that this means, "10 to what power is 10000?"

(ii) Find x given that,

$$log_{10} 100 000 000 = x$$

(iii) Find x given that,

$$log_{10} 10 = x$$

(iv) Find x given that,

$$log_{10}\left(\frac{1}{1000}\right) = x$$

(\mathbf{v}) Find x given that,

$$log_{10} \ 0.01 = x$$

(\mathbf{vi}) Find x given that,

$$log_{10} \sqrt{10} = x$$

(vii) Find x given that,

$$log_{10} \ 1 = x$$

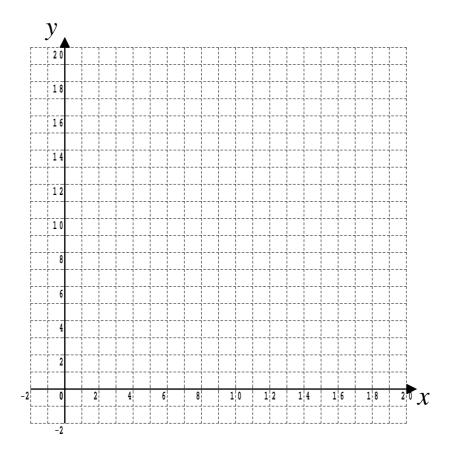
(viii) Find x given that,

$$log_8 2 = x$$

(\mathbf{ix}) Find x given that,

$$log_5\left(\frac{1}{125}\right) = x$$

Question 6


(i) Complete the table of values for the exponential function given by

$$y = 1.2^x$$

x	-2	- 1	0	1	2	3	4	5	6	7	8	12	16
у				1.2	1.4		2.1						

[3 marks]

(ii) Graph the function, using the values from the completed table.

[2 marks]

(iii) Use your graph, evidencing your method, to find

$$1.2^{6.5}$$

[2 marks]

(iv) Use your graph, evidencing your method, to help you solve the equation

$$1.2^x = 12$$

[2 marks]

(v) Add the line y = x to your graph.

[1 mark]

(vi) Reflect the exponential curve, plotted in part (ii), in the line y = x.

[1 mark]

This reflected curve is the inverse function.

The inverse of an exponential function is a logarithm function.

In this case, the exponential function;

$$y = 1.2^{x}$$

has as an inverse, the logarithm function;

$$y = log_{1,2} x$$

(vii) Use your reflection graph, evidencing your method, to find $log_{1,2}$ 8

[2 marks]

(**viii**) Use your reflection graph, evidencing your method, to find $log_{1,2}$ 18

[2 marks]