
Coordinate Geometry

11.1 Normal from Curve

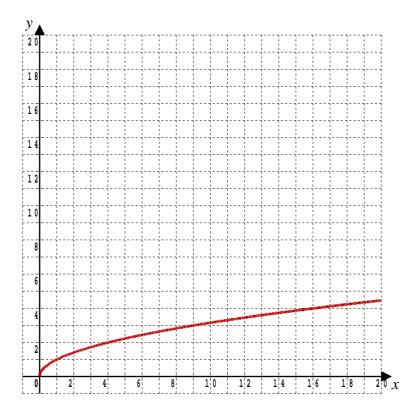
Previously, the curve with equation $y = \frac{x^3}{9} - x$ was studied and the tangent

to it at the point (3, 0) found to be y = 2x - 6

There is a second line of interest, called the "normal" that is a right angles to the tangent at any specified point. At the point (3, 0) the normal to the curve

$$y = \frac{x^3}{9} - x$$
 turns out to be $y = -\frac{1}{2}x + \frac{3}{2}$.

Notice that the gradient of the tangent, m_t , and the gradient of the normal, m_n have the property of any pair of mutually perpendicular lines; $m_t \times m_n = -1$ In other words, each is the sign changed reciprocal of the other.


11.2 Why the Normal is of Interest

Imagine the graph to be a road map and the curve a road on that map. A car moves along the road with constant speed. The tangent represents the direction a car moving along the road has at any moment. The normal represents the direction along which the force felt by a person in the car acts as it moves around each bend. Like the tangent the normal gives only a direction. It does not give the magnitude of the force; that depends on how sharply the road is bending and, indeed, on a straight piece of road the force along the normal has magnitude zero. The force along the normal is often referred to as centripetal force.

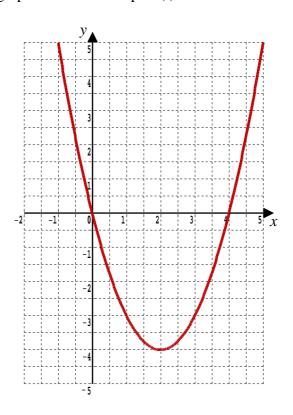
11.3 Example

The equation of a curve is $y = \sqrt{x}$

- (i) Find the equation of the normal to this curve at the point where x = 4
- (ii) To the graph below add the part (i) normal.

Teaching Video: http://www.NumberWonder.co.uk/v9033/11.mp4

11.4 Exercise


Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 52

Question 1

The equation of a curve is $y = x^2 - 4x$

- (i) Find the equation of the normal to this curve at the point where x = 4
- (ii) To the graph below add the part (i) normal

Additional Mathematics Examination Question from June 2009, Q2 (OCR) Find the equation of the normal to the curve

$$y = x^3 + 5x - 7$$

at the point (1, -1)

[5 marks]

Question 3

Additional Mathematics Examination Question from June 2019, Paper 1, Q3 (OCR) Find the equation of the normal to the curve

$$y = x^3 - 2x^2 + 2x + 4$$

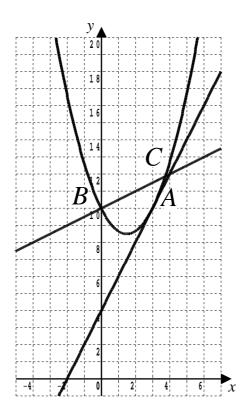
at the point (2, 8)

Additional Mathematics Examination Question from June 2018, Q7 (OCR)

(i) Find the coordinates of the points where the line y = 7x - 9 cuts the curve $y = x^2 + 2x - 5$

[4 marks]

(ii) Determine whether the line is a normal to the curve at either of the points of intersection

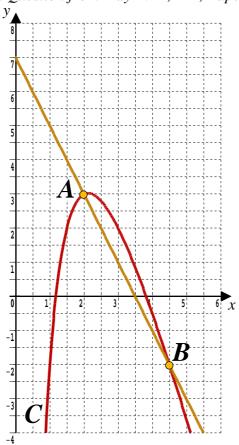

Additional Mathematics Examination Question from June 2014, Q10 (OCR)

(i) Find the coordinates of the point P on the curve $y = 2x^2 + x - 5$ where the gradient of the curve is 5

[3 marks]

(ii) Find the equation of the normal to the curve at the point P

Additional Mathematics Examination Question from June 2005, Q10 (OCR)


The curve shown has equation;

$$y = \frac{2}{3}x^2 - 2x + 10$$

(i) Find the equation of the tangent to the curve at A (3, 10)

(ii)	Show that the equation of the normal to the curve at $B(0, 10)$ is $2y - x = 20$	
(iii)	Find the coordinates of the point C where these two lines intersect	[3 marks]
(m)	Find the coordinates of the point C where these two lines intersect	
(iv)	Calculate the length BC	[3 marks]
		[2 marks]

A-Level Examination Question from May 2014, IAL, Paper C1(R), Q11 (Edexcel)

The sketch is of part of the curve C with equation $y = 20 - 4x - \frac{18}{x}$, x > 0

Point A lies on C and has an x coordinate equal to 2

(a) Show that the equation of the normal to C at A is y = -2x + 7

The normal to C at A meets C again at the point B (b) Use algebra to find the coordinates of B						
(~)	222 mgrota to 1ma are coordinates					
			[5 marks]			