Coordinate Geometry

4.1 Lines at Right Angles

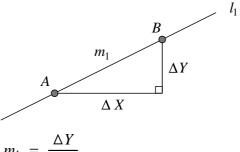
The Perpendicular Lines Theorem (Version 1)

If the gradient of the line l_1 is m_1 and the gradient of the line l_2 is m_2 then the lines l_1 and l_2 are perpendicular if and only if

$$m_1 \times m_2 = -1$$

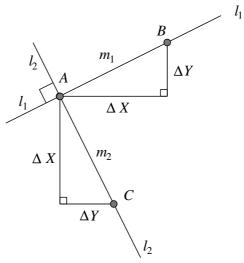
Proof

Consider two points, A and B on the line l_1 which has gradient m_1



Clearly, $m_1 = \frac{\Delta Y}{\Delta X}$

Now, consider a rotation of -90° about the point A which gives a line l_2 with gradient m_2 which is perpendicular to l_1 .



Clearly,
$$m_2 = -\frac{\Delta X}{\Delta Y}$$

Observe that,
$$m_1 \times m_2 = \frac{\Delta Y}{\Delta X} \times -\frac{\Delta X}{\Delta Y}$$

= -1

In many questions, the gradient of a first line will be known and the gradient of a second, perpendicular to the first, sought.

In consequense the following version of the theorem is often of more use;

The Perpendicular Lines Theorem (Version 2)

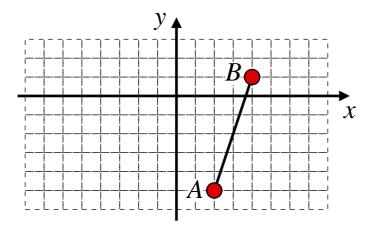
Given a line l_1 with gradient m_1 then the gradient m_2 of any perpendicular line l_2 is the *sign changed reciprocal* of m_1 .

That is,
$$m_2 = -\frac{1}{m_1}$$

4.2 Example

Find the equation of the perpendicular bisector of the line segment AB where A is (2, -5) and B is (4, 1)

- (i) Give your answer in the form y = mx + c
- (ii) Illustrate your answer with a sketch graph.



Teaching Video: http://www.NumberWonder.co.uk/v9033/4.mp4

4.3 Exercise

Any solution based entirely on graphical or numerical methods is not acceptable

Marks Available: 50

Question 1

A line, L, has equation

$$y = \frac{2}{3}x + \frac{1}{3}$$

(i) What is the gradient of L?

[1 mark]

(ii) What would be the gradient of a line, perpendicular to L?

[1 mark]

Question 2

A line has equation 2x + 5y - 4 = 0

(i) Write this line's equation in the form y = mx + c

[1 marks]

(ii) Hence state the gradient of the line 2x + 5y - 4 = 0

[1 mark]

(iii) What is the gradient of a line, perpendicular to 2x + 5y - 4 = 0?

[1 mark]

Question 3

A line has equation 5x - 3y - 2 = 0

(i) What is the gradient of this line?

[2 marks]

(ii) What is the gradient of a line perpendicular to 5x - 3y - 2 = 0?

[1 mark]

Question 4

Additional Mathematics Examination Question from June 2015, Q1, (OCR, FSMQ) Find the equation of the line which is perpendicular to the line 2x + 3y = 5 and which passes through the point (3, 4)

[3 marks]

Question 5

A-Level Examination question from May 2011, C1, Q3 (Edexcel) The points P and Q have coordinates (-1, 6) and (9, 0) respectively. The line l is perpendicular to PQ and passes through the mid-point of PQ. Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

$\mathbf{\alpha}$	4 •	
()11	estion	h
Vu.	COLULI	v

A-Level Examination Question from January 2010, C1, Q3 (Edexcel)

The line l_1 has equation 3x + 5y - 2 = 0

(a) Find the gradient of l_1

[2 marks]

The line l_2 is perpendicular to l_1 and passes through the point (3, 1)

(**b**) Find the equation of l_2 in the form y = mx + c, where m and c are constants

[3 marks]

Question 7

A-Level Examination Question from January 2006, C1, Q3 (Edexcel)

The line L has equation y = 5 - 2x

(a) Show that the point P(3, -1) lies on L

[1 mark]

(**b**) Find an equation of the line perpendicular to L, which passes through P. Give your answer in the form ax + by + c = 0, where a, b and c are integers.

Questi Additio	ion 8 onal Mathematics Examination Question from June 2014, Q8 (OCR)	
Four p	points have coordinates $A(-5, -1)$, $B(0, 4)$, $C(7, 3)$ and $D(2, 4)$	(-2)
(i)	Using gradients of lines, prove that ABCD is a parallelogram	
(ii)	Using lengths of lines, prove that <i>ABCD</i> is a rhombus	[2 marks]
(iii)	Prove that <i>ABCD</i> is not a square	[2 marks]

[2 marks]

The line	Examination Question from January 2011, C1, Q9 (Edexcel) at L_1 has equation $2y - 3x - k = 0$, where k is a constant. That the point $A(1, 4)$ lies on L_1 find, the value of k ,	
(b)	the gradient of L_1	[1 mark]
The line (c)	Find an equation of L_2 giving your answer in the form $ax + by + c = 0$, where a , b and c are integers.	[2 marks]
The line (d)	E L_2 crosses the x -axis at the point B Find the coordinates of B	[4 marks]

Find the exact length of AB

(e)

[2 marks]

[2 marks]

•	10
Ouestion	n III
Oucsuo	

A-Level Examination Question from May 2007, C1, Q11 (Edexcel)

The line l_1 has equation y = 3x + 2,

and the line l_2 has equation 3x + 2y - 8 = 0

(a) Find the gradient of the line l_2

[2 marks]

The point of intersection of l_1 and l_2 is P

(**b**) Find the coordinates of P

[3 marks]

The lines l_1 and l_2 cross the line y = 1 at the points A and B respectively.

(c) Find the area of triangle ABP

[4 marks]