5.1 Homework (Consolidation)

Marks Available: 76

Question 1

Write down the exact value of each of the following:

- 82 (i)
- (ii) $(-6)^3$ (iii) $\left(\frac{1}{2}\right)^5$

- (iv) $100^{\frac{1}{2}}$ (v) $8^{\frac{1}{3}}$ (vi) $(-1)^{97}$
- (vii) $\left(\frac{\pi}{2}\right)^0$
- (**viii**) 0^{67}
- $(\mathbf{ix}) \qquad \left(\frac{5}{9}\right)^2$

[9 marks]

Question 2

Consider the curve, $y = x^3 - x$

Write down the points on the curve that have the *x* part as given;

- (i) $(0, \underline{\hspace{1cm}})$ (ii) $(1, \underline{\hspace{1cm}})$ (iii) $(2, \underline{\hspace{1cm}})$

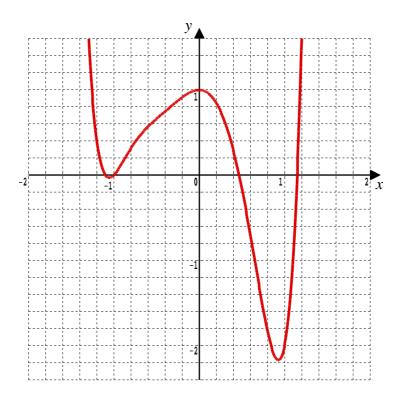
- (iv) $(4, ___)$ (v) $(10, __)$ (vi) $(-10, __)$

[6 marks]

Question 3

Write down the exact value of the following:

 3^{-2} (i)


(ii) $\sqrt{\left(\frac{16}{49}\right)}$

(iii) $\sqrt{0.16}$

(iv) $(-1)^{1001}$

The graph is of the function

$$w(x) = x^8 + 3x^5 - 4x^3 - 3x^2 + 1$$

(i) Write down the gradient function, w'(x)

[2 marks]

(ii) Write down the bend detector function, w''(x)

[2 marks]

(iii) Use the appropriate function to find the point on this curve where x = 1

[2 marks]

(iv) Use the appropriate function to find the gradient of this curve when x = 1

[2 marks]

(v) Determine if the curve is bending anticlockwise or clockwise when x = 1

[2 marks]

Differentiate the following taking care to write "y =" or " $\frac{dy}{dx}$ =" as appropriate;

(i)
$$y = 24x^5$$
 (ii) $y = 4x^{-3}$ (iii) $y = 8x + 3$

(ii)
$$y = 4x^{-3}$$

(iii)
$$y = 8x + 3$$

[1, 1, 1 marks]

(iv)
$$y = (2x + 3)^2$$

(iv) $y = (2x + 3)^2$ Hint: Begin by expanding the brackets

[2 marks]

$$(\mathbf{v})$$
 $y = \sqrt{x}$

(v) $y = \sqrt{x}$ Hint: Begin by writing it in the form $y = x^n$

[2 marks]

(**vi**)
$$y = \frac{1}{x^4}$$

Hint: Begin by writing it in the form $y = x^n$

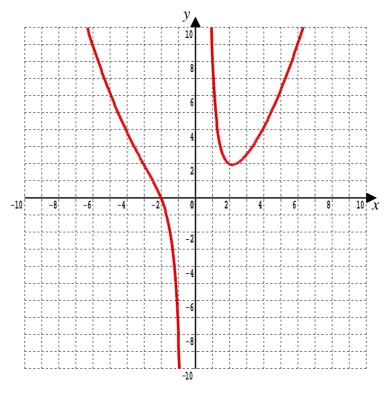
[2 marks]

Question 6

Write down the exact value of the following:

$$\left(\mathbf{i}\right) \qquad \left(\frac{11}{5}\right)^{-2}$$

$$(ii) 0.04^3$$


[2, 2 marks]

(iii)
$$\left(1 + \frac{9}{16}\right)^{\frac{1}{2}}$$

(iv)
$$\left(-\frac{3}{4}\right)^{-3}$$

[2, 2 marks]

The graph is of the function $s(x) = \frac{8}{x^3} + \frac{x^2}{4}$

(i) Write down the gradient function, s'(x)

[3 marks]

(ii) Write down the bend detector function, s''(x)

[3 marks]

(iii) Use the appropriate function to find the point on this curve where x = 2

[2 marks]

(iv) Use the appropriate function to find the gradient of this curve when x = 2

[2 marks]

(v) Determine if the curve is bending anticlockwise or clockwise when x = 2

[2 marks]

Differentiate the following taking care to write "y =" or " $\frac{dy}{dx}$ =" as appropriate;

(i)
$$y = 9x^4 - 8x^{-2}$$

(i)
$$y = 9x^4 - 8x^{-2}$$
 (ii) $y = 22x^4 + \frac{12}{x^4}$

(iii)
$$y = x^8 (4x^3 + 7x^2)$$
 (iv) $y = \frac{1}{5x^2}$

(iv)
$$y = \frac{1}{5x^2}$$

$$(\mathbf{v}) \qquad y = \frac{7x^3}{11}$$

(vi)
$$y = \frac{x^9 + 6x^5}{2x^3}$$

[18 marks]